Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^{603}=2^3\cdot2^{600}=2^3\cdot\left(2^6\right)^{100}=8\cdot64^{100}\)
\(3^{402}=3^2\cdot\left(3^4\right)^{100}=9\cdot81^{100}\)
Vì 8 < 9 và \(64^{100}< 81^{100}\)
=> \(2^{603}< 3^{402}\)
Ta có :
2300 = (23)100 = 8100 < 9100 = (32)100 = 3200
=> 2300 < 3200
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\) (1)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\) (2)
Từ (1) và (2)
\(\Rightarrow2^{300}< 3^{200}\)
Vậy \(2^{300}< 3^{200}\).
a: \(\widehat{A}=180^0-70^0-36^0=74^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
b: Xét ΔABM vuông tại B và ΔADM vuông tại D có
AM chung
AB=AD
Do đó: ΔABM=ΔADM
c: Ta có: ΔABM=ΔADM
nên MB=MD
hay M nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Ta có: NB=ND
nên N nằm trên đường trung trực của BD(3)
Từ (1), (2) và (3) suy ra A,N,M thẳng hàng
Câu b cô tớ in ra đề như vậy bạn ạ. ĐỂ chiều mình hỏi lại cô ạ
Ta có : \(\begin{cases}\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\\a+2b+3c=44,2\end{cases}\) \(\Leftrightarrow\begin{cases}\frac{a}{3}=\frac{2b}{8}=\frac{3c}{15}\\a+2b+3c=44,2\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{a}{3}=\frac{2b}{8}=\frac{3c}{15}=\frac{a+2b+3c}{3+8+15}=\frac{44,2}{26}=1,7\)
Từ đó dễ dàng suy ra a,b,c.
a )
\(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(9^{200}=\left(9^2\right)^{100}=81^{100}\)
Ta có : \(81^{100}=81^{100}\)
\(\Rightarrow3^{400}=9^{200}\)
b )
\(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}=\left(3^2\right)^{111}=9^{111}\)
Ta cos : \(8^{111}< 9^{111}\)
\(\Rightarrow2^{332}< 3^{223}\).
a) 9200 = 3400 => 3400 < 9200
b) 2332 = 4. 8111
3223 = 3.9111
=> 2332 < 3223