Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)
1 , ( x - 3 ) . ( 4 - x ) = 01 , ( x - 3 ) . ( 4 - x ) = 0
⇒\orbr{x−3=04−x=0⇒\orbr{x−3=04−x=0
⇒\orbr{x=3∈Zx=4∈Z⇒\orbr{x=3∈Zx=4∈Z
vậy______
2,(x−5)(x2+1)=02,(x−5)(x2+1)=0
⇒\orbr{x−5=0x2+1=0⇒\orbr{x−5=0x2+1=0
⇒\orbr{x=5∈Zx∈∅⇒\orbr{x=5∈Zx∈∅
vậy x = 5
3, ( x + 1 ) + ( x + 2 ) + (x + 3 ) + ... +( x + 99 ) = 0
(x+x+x+....+x)+(1+2+3+.....+99) = 0
(x.99) + 5050 = 0
x.99 = 0-5050
x.99 = -5050
x = -5050 : 99
x = −505099∉Z⇒x∈∅−505099∉Z⇒x∈∅
vậy_____
Ta có \(ab+bc+ac\le a^2+b^2+c^2=3\)
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
=> \(MaxS=6\)xảy ra khi a=b=c=1
\(2S=2\left(a+b+c\right)+2ab+2bc+2ac+a^2+b^2+c^2-3\)
=> \(2S=2\left(a+b+c\right)+\left(a+b+c\right)^2-3\)
=> \(2S=\left(a+b+c+1\right)^2-4\ge-4\)
=> \(S\ge-2\)
\(MinS=-2\)xảy ra khi a+b+c=-1