Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{24}\)<=>\(\frac{24y}{24xy}\)+\(\frac{24x}{24xy}\)=\(\frac{xy}{24xy}\)
<=> 24y +24x=xy<=> (24y-xy) -(576-24x)+576=0
<=> y(24-x) -24(24-x)=-576
<=> (24-x)(y-24)=-576=-576.1=1.(-576)=(-24).24=24.(-24)=12.(-48)=48.(-12)=....
và lần lượt cho 24-x và y-24 = các kết quả kia và chỉ lấy những giá trị là số tự nhiên
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{6}{2x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow6\left(\dfrac{1}{2x}+\dfrac{1}{y}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}+\dfrac{1}{y}=\dfrac{1}{24}^{\left(1\right)}\)
Lại có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}^{\left(2\right)}\)
Lấy (2) trừ (1) ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{2x}-\dfrac{1}{y}=\dfrac{1}{16}-\dfrac{1}{24}\)
\(\Leftrightarrow\dfrac{2-1}{2x}=\dfrac{1}{48}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{48}\)
=> 2x = 48
<=> x = 24
Thay x = 24 vào (2) ta có:
\(\dfrac{1}{24}+\dfrac{1}{y}=\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{48}\)
=> y = 48
Vậy ...
Ta có: \(\dfrac{3}{x}\) + \(\dfrac{6}{y}\) = \(\dfrac{1}{4}\)
<=> 3(\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) ) = \(\dfrac{1}{4}\)
<=> \(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) = \(\dfrac{1}{12}\) (1)
Mặt khác: \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{16}\) (2)
Trừ (2) cho (1) vế theo vế ta được:
\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) - \(\dfrac{1}{x}\) - \(\dfrac{1}{y}\) = \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{y}\) = \(\dfrac{1}{48}\) <=> y = 48
Thay y =48 vào (2) ta có: \(\dfrac{1}{x}\) + \(\dfrac{1}{48}\) = \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{x}\) = \(\dfrac{1}{24}\) <=> x = 24
Vậy x =24 ; y =48
Câu 8: Tìm x?
\(\left(x+5\right)^2-\left(x+2\right)\left(x-3\right)=-2\\ \\ < =>x^2+10x+25-x^2+3x-2x+6=-2\\ < =>x^2-x^2+10x+3x-2x=-2-25-6\\ < =>11x=-33\\ =>x=-\frac{33}{11}=-3\)
Ta có :
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+....+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+....+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)
\(=\frac{6}{x\left(x+6\right)}\)
Có 20 học sinh nữ đang xếp thành một hàng thì có 4 học sinh nam chen vào hàng. Mỗi một học sinh nam đếm số bạn nữ đứng trước mình thì các con số thu được là 17, 14, 5 và 2 tương ứng. Mỗi một học sinh nữ cũng đếm số học sinh nam đứng trước mình. Hỏi tổng số các số mà các bạn nữ đếm được là bao nhiêu?
Câu 1:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
\(\Rightarrow\left(1+\frac{x+1}{2002}\right)+\left(1+\frac{x+2}{2001}\right)+\left(1+\frac{x+3}{2000}\right)=\left(1+\frac{x+4}{1999}\right)+\left(1+\frac{x+5}{1998}\right)+\left(1+\frac{x+6}{1997}\right)\)
\(\Rightarrow\frac{x+2003}{2002}+\frac{x+2003}{2001}+\frac{x+2003}{2000}=\frac{x+2003}{1999}+\frac{x+2003}{1998}+\frac{x+2003}{1997}\)
\(\Rightarrow\frac{x+2003}{2002}+\frac{x+2003}{2001}+\frac{x+2003}{2000}-\frac{x+2003}{1999}-\frac{x+2003}{1998}-\frac{x+2003}{1997}=0\)
\(\Rightarrow\left(x+2003\right)\left(\frac{1}{2002}+\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\right)=0\)
Mà \(\frac{1}{2002}+\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\ne0\)
\(\Rightarrow x+2003=0\)
\(\Rightarrow x=-2003\)
Vậy x = -2003
Câu 6:
Giải:
Áp dụng định lí Py-ta-go vào \(\Delta ABC\left(\widehat{B}=90^o\right)\) có:
\(\Rightarrow AB^2+BC^2=AC^2\)
\(\Rightarrow6^2+BC^2=10^2\)
\(\Rightarrow BC^2=64\)
\(\Rightarrow BC=8\)
\(\Rightarrow S_{ABCD}=8.6=48\left(cm^2\right)\)
Vậy...
Câu 1:
? 10cm H B A C
ta có: \(S_{ABC}=\dfrac{1}{2}.AH.BC\)
hay \(45=\dfrac{1}{2}.10.BC\)
\(\Rightarrow BC=\dfrac{45}{5}=9\)
Vậy BC = 9(cm)
Câu 1:
Độ dài BC bằng:
\(S_{ABC}=\frac{AH.BC}{2}\\ =>BC=\frac{S_{ABC}.2}{AH}=\frac{45.2}{10}=9\left(cm\right)\)
Câu 1:
Cạnh BC bằng:
\(S_{ABC}=\frac{AH.BC}{2}\\ =>BC=\frac{S_{ABC}.2}{AH}=\frac{45.2}{10}=9\left(cm\right)\)
Câu 6:
A B C D
Giải:
Xét \(\Delta ABC\left(\widehat{B}=90^o\right)\) có:
\(AB^2+BC^2=AC^2\)
\(\Rightarrow\sqrt{2^2}+\sqrt{2^2}=AC^2\)
\(\Rightarrow AC^2=4\)
\(\Rightarrow AC=2\)
Vậy đường chéo là 2 cm
câu 4
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}=\dfrac{k}{x\left(x+100\right)}\) =>\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+99}-\dfrac{1}{x+100}=\dfrac{k}{x\left(x+100\right)}\) =>\(\dfrac{1}{x}-\dfrac{1}{x+100}=\dfrac{k}{x\left(x+100\right)}\)
=>\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{k}{x\left(x+100\right)}\)
=>x+100-x=k
=>k=100
\(\Delta AMC\) và \(\Delta ABC\) có chung chiều cao hạ từ C và đáy AM=\(\dfrac{2}{3}AB\) nên\(S_{AMC}=\dfrac{2}{3}S_{ABC}=\dfrac{2}{3}.54=36\left(cm^2\right)\)
\(\Delta AMC\) và \(\Delta AMN\) có chung chiều cao hạ từ M và đáy \(AN=\dfrac{1}{3}AC=>S_{AMN}=\dfrac{1}{3}S_{AMC}=\dfrac{1}{3}.36=12\left(cm^2\right)\) Vậy diện tích tam giác AMN=12(cm2) A B C M N