Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Nhập kết quả dưới dạng số thập phân gọn nhất).
Câu 7:
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A=\left(x-3\right)^2=21\ge21\)
Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)
Vậy \(MIN_A=21\) khi x = 3
Câu 10:
\(A=4x^2+4x+11\\ =\left[\left(2x\right)^2+2.2x.1+1\right]+10\\ =\left(2x+1\right)^2+10\ge10\left(\forall x\in Z\right)\)
Vậy: \(Min_A=10\) khi \(x=-\frac{1}{2}\)
Câu 8:
Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{49.51}=\frac{6x-5}{10x+1}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)=\frac{6x-5}{10x+1}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{49}-\frac{1}{51}=\frac{6x-5}{10x+1}.2\)
\(\Rightarrow1-\frac{1}{51}=\frac{12x-10}{10x+1}\)
\(\Rightarrow\frac{50}{51}=\frac{12x-10}{10x+1}\)
\(\Rightarrow612x-510=500x+50\)
\(\Rightarrow112x=660\)
\(\Rightarrow x=5\)
Vậy x = 5
Câu 7:
Vì \(x^2+3>0\) nên để B đạt giá trị lớn nhất thì \(x^2+3\) nhỏ nhất
Ta có: \(x^2\ge0\)
\(\Rightarrow x^2+3\ge3\)
\(\Rightarrow\frac{9}{x^2+3}\le\frac{9}{3}=3\)
Vậy \(MAX_B=3\) khi x = 0
Câu 8:
Giải:
\(B\in Z\Rightarrow2x-3⋮2x+1\)
\(\Rightarrow\left(2x+4\right)-7⋮2x+1\)
\(\Rightarrow2\left(x+2\right)-7⋮2x+1\)
\(\Rightarrow7⋮2x+1\)
\(\Rightarrow2x+1\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{0;-1;3;-4\right\}\)
Vậy \(x\in\left\{-4;-1;0;3\right\}\)
Bài 10:
\(P=2x^2-2xy+y^2+4x+4=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)\)
\(P=\left(x-y\right)^2+\left(x+2\right)^2=0\)
ta có: \(\left\{\begin{matrix}\left(x-y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow P=0\Leftrightarrow\left\{\begin{matrix}x=-2\\y=x=-2\end{matrix}\right.\)
\(\Rightarrow A=\left(-2\right)^4+\left(-2\right)^4=32\)
câu 5 kq =0
câu 6: góc C=90 độ (tam giác vuông tại C)(Định lý Pytago)
câu 7: 0 giá trị
câu 8:x=1
câu 10: x=3;y=1
x+y=4
bye
nếu đúng tích cho mik nha
Mik cảm ơn trc
Ta có : \(2x^2+2y^2-2xy+2x+2y+2=0\)
=>\(x^2-2xy+y^2+x^2+2x+1+y^2+2y+1=0\)
=>\(\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)
=>\(\left\{\begin{matrix}x-y=0< =>x=y\\x+1=0=>x=-1\\y+1=0=>y=-1\end{matrix}\right.\)
Thế x=-1;y=-1 vào biểu thức , ta có :
\(\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1+0=1\)
\(2x^2+2y^2-2xy+2x+2y+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left[\begin{matrix}\left(x-y\right)^2=0\Leftrightarrow x=y\\\left(x+1\right)^2=0\Leftrightarrow x=-1\\\left(y+1\right)^2=0\Leftrightarrow y=-1\end{matrix}\right.\)
\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)
\(A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}\)
\(A=1+0=1\)
Theo bài ra , ta có :
\(2x^2-2xy+y^2+4x+4=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x+4\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(x+4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-y=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=y\\x=-4\end{matrix}\right.\)
\(\Rightarrow x=y=-4\)
Thay x = y = -4 vào A ta được
\(A=x^4+y^4\)
\(\Rightarrow A=\left(-4\right)^4+\left(-4\right)^4=2\times\left(-4\right)^4=512\)
Vậy A = 512
Chúc bạn hok tốt =))
em nhỏ hơn anh một tuổi ák