là các số thỏa mãn
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Theo bài ra , ta có :

\(2x^2-2xy+y^2+4x+4=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x+4\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(x+4\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x-y=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=y\\x=-4\end{matrix}\right.\)

\(\Rightarrow x=y=-4\)

Thay x = y = -4 vào A ta được

\(A=x^4+y^4\)

\(\Rightarrow A=\left(-4\right)^4+\left(-4\right)^4=2\times\left(-4\right)^4=512\)

Vậy A = 512

Chúc bạn hok tốt =))ok

19 tháng 2 2017

em nhỏ hơn anh một tuổi ák

7 tháng 11 2016

dàigianroi

8 tháng 11 2016

uk

 

21 tháng 2 2017
Câu 1:Hệ số của trong khai triển của
(Nhập kết quả dưới dạng số thập phân gọn nhất).
\(\left(\frac{1}{2}x-3\right)^3\)
\(=\frac{1}{8}x^3-2,25x^2+13,5x-27\)
ĐS: 13,5
Câu 2:Với mọi giá trị của , giá trị của biểu thức bằng
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2\)
= 29
ĐS: 29
Câu 3:Hệ số của trong khai triển của là .
\(\left(2x^2+3y\right)^3\)
\(=8x^6+36x^4y+54x^2y^2+27y^2\)
ĐS: 54
Câu 4:Với , giá trị của biểu thức bằng .
\(x^3-y^3-3xy\times1\)
\(=x^3-y^3-3xy\left(x-y\right)\)
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\)
= 13
= 1
ĐS: 1
Câu 5:Với , giá trị của biểu thức bằng
\(x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
= 32 - 4 . 3 + 1
= - 2
ĐS: - 2
Câu 6:Giá trị nhỏ nhất của biểu thức
\(4x^2+4x+11\)
= 4x2 + 4x + 1 + 11
= (2x + 1)2 + 11 \(\ge\) 11
ĐS: 11
Câu 7:Cho . Khi đó bằng
(x - y)2 = 52
<=> x2 - 2xy + y2 = 25
<=> 2xy = 15 - 25
<=> 2xy = - 10
<=> xy = - 10 : 2
<=> xy = - 5
x3 - y3
= (x - y)(x2 + xy + y2)
= 5 . (15 - 5)
= 50
ĐS: 50
Câu 8:Giá trị lớn nhất của biểu thức
Q = 5 - x2 + 2x - 4y2 - 4y
= 7 - x2 + 2x - 1 - 4y2 - 4y - 1
= 7 - (x - 1)2 - (2y + 1)2 \(\ge\) 7
Câu 9:Giá trị của x thỏa mãn
(x + 3)2 - x2 + 9 = 0
<=> (x + 3)2 - (x - 3)(x + 3) = 0
<=> (x + 3)(x + 3 - x + 3) = 0
<=> 6(x + 3) = 0
<=> x + 3 = 0
<=> x = - 3
ĐS: - 3
Câu 10:Giá trị nhỏ nhất của biểu thức
x2 - 4x + 4y2 + 12y + 13
= x2 - 4x + 4 + 4y2 + 12y + 9
= (x - 2)2 + (2y + 3)2 \(\ge\) 0
21 tháng 2 2017

@Phương An nhanh thế

17 tháng 3 2017

1:27

2:5

3:7

4:8000

5:68

6:110

7:13

8:???

9;???

10:4

có câu sai nhan bạn

17 tháng 3 2017

8)-7

2 tháng 3 2017

Câu 7:

Ta có: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow A=\left(x-3\right)^2=21\ge21\)

Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)

Vậy \(MIN_A=21\) khi x = 3

Câu 10:

\(A=4x^2+4x+11\\ =\left[\left(2x\right)^2+2.2x.1+1\right]+10\\ =\left(2x+1\right)^2+10\ge10\left(\forall x\in Z\right)\)

Vậy: \(Min_A=10\) khi \(x=-\frac{1}{2}\)

27 tháng 2 2017

vòng mấy thế

27 tháng 2 2017

Câu 8:

Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{49.51}=\frac{6x-5}{10x+1}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)=\frac{6x-5}{10x+1}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{49}-\frac{1}{51}=\frac{6x-5}{10x+1}.2\)

\(\Rightarrow1-\frac{1}{51}=\frac{12x-10}{10x+1}\)

\(\Rightarrow\frac{50}{51}=\frac{12x-10}{10x+1}\)

\(\Rightarrow612x-510=500x+50\)

\(\Rightarrow112x=660\)

\(\Rightarrow x=5\)

Vậy x = 5

27 tháng 2 2017

Câu 7:

\(x^2+3>0\) nên để B đạt giá trị lớn nhất thì \(x^2+3\) nhỏ nhất

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2+3\ge3\)

\(\Rightarrow\frac{9}{x^2+3}\le\frac{9}{3}=3\)

Vậy \(MAX_B=3\) khi x = 0

27 tháng 2 2017

Câu 8:

Giải:
\(B\in Z\Rightarrow2x-3⋮2x+1\)

\(\Rightarrow\left(2x+4\right)-7⋮2x+1\)

\(\Rightarrow2\left(x+2\right)-7⋮2x+1\)

\(\Rightarrow7⋮2x+1\)

\(\Rightarrow2x+1\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{0;-1;3;-4\right\}\)

Vậy \(x\in\left\{-4;-1;0;3\right\}\)

Câu 1:Kết quả của phép cộng hai phân thức với khác 1 là Câu 2:Tổng bốn góc trong của một tứ giác lồi bằng Câu 3:Số nghiệm của phương trình là Câu 4:Số nghiệm của phương trình là Câu 5:Cho và . Khi đó, giá trị của biểu thức bằng . Câu 6:Số nguyên tố n lớn hơn 3 để giá trị của biểu thức chia hết cho giá trị của biểu thức là Câu 7:Cho hình vuông ABCD có độ...
Đọc tiếp
Câu 1:Kết quả của phép cộng hai phân thức với khác 1 là
Câu 2:Tổng bốn góc trong của một tứ giác lồi bằng
Câu 3:Số nghiệm của phương trình
Câu 4:Số nghiệm của phương trình
Câu 5:Cho .
Khi đó, giá trị của biểu thức bằng .
Câu 6:Số nguyên tố n lớn hơn 3 để giá trị của biểu thức chia hết cho giá trị của biểu thức
Câu 7:Cho hình vuông ABCD có độ dài đường chéo bằng 12 cm.
M là một điểm bất kỳ trên cạnh AB, O là giao điểm hai đường chéo.
Đường thẳng qua O và vuông góc với OM cắt BC tại N. Diện tích tứ giác OMBN bằng .
Câu 8:Giá trị lớn nhất của biểu thức
Câu 9:Cho tam giác ABC có đường cao AH trọng tâm G. Một đường thẳng đi qua G
và song song với BC cắt các cạnh AB, AC tại M và N. Nếu diện tích tam giác ABC bằng 36
thì diện tích tam giác HMN bằng
Câu 10:Cho là các số thỏa mãn
Khi đó giá trị của biểu thức
3
26 tháng 2 2017

Bài 10:

\(P=2x^2-2xy+y^2+4x+4=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)\)

\(P=\left(x-y\right)^2+\left(x+2\right)^2=0\)

ta có: \(\left\{\begin{matrix}\left(x-y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow P=0\Leftrightarrow\left\{\begin{matrix}x=-2\\y=x=-2\end{matrix}\right.\)

\(\Rightarrow A=\left(-2\right)^4+\left(-2\right)^4=32\)

26 tháng 2 2017

Các bạn giải gấp cho mình câu 3 nhé mình đang cần

17 tháng 2 2017

câu 5 kq =0

câu 6: góc C=90 độ (tam giác vuông tại C)(Định lý Pytago)

câu 7: 0 giá trị

câu 8:x=1

câu 10: x=3;y=1

x+y=4
bye
nếu đúng tích cho mik nha

Mik cảm ơn trc

17 tháng 2 2017

gioi hoan ho

27 tháng 2 2017

Ta có : \(2x^2+2y^2-2xy+2x+2y+2=0\)

=>\(x^2-2xy+y^2+x^2+2x+1+y^2+2y+1=0\)

=>\(\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{\begin{matrix}x-y=0< =>x=y\\x+1=0=>x=-1\\y+1=0=>y=-1\end{matrix}\right.\)

Thế x=-1;y=-1 vào biểu thức , ta có :

\(\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1+0=1\)

28 tháng 2 2017

\(2x^2+2y^2-2xy+2x+2y+2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left[\begin{matrix}\left(x-y\right)^2=0\Leftrightarrow x=y\\\left(x+1\right)^2=0\Leftrightarrow x=-1\\\left(y+1\right)^2=0\Leftrightarrow y=-1\end{matrix}\right.\)

\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)

\(A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}\)

\(A=1+0=1\)