K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Chọn A

+ Như ta đã biết, điều kiện để hàm số trùng phương có 3 điểm cực trị là  - b 2 a > 0 .

Ở đây lại có, a ≠ 0 nên điều kiện trở thành ab < 0.

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

3 tháng 4 2017

6 tháng 10 2019

Đáp án B

Hàm số y =  x + 1 3 (5 - x) xác định trên R.

y' = - x + 1 3  + 3 x + 1 2 (5 - x) = 2 x + 1 2 (7 - 2x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra hàm số chỉ có một cực trị (là cực đại)

Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị

9 tháng 9 2019

Đáp án: B.

Hàm số y =  ( x + 1 ) 3 (5 - x) xác định trên R.

y' = - ( x + 1 ) 3  + 3 ( x + 1 ) 2 (5 - x) = 2 ( x + 1 ) 2 (7 - 2x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra hàm số chỉ có một cực trị (là cực đại)

 

Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị

8 tháng 2 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

Δ' = m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

13 tháng 7 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

∆ ' =  m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1 Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung A. -2 < m < 2 B. \(\left[{}\begin{matrix}m2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0 Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\) và \(x^2_1+x^2_2< 14\) ? A. 2 B. 1 C. Vô số D. 4 Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\) Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo...
Đọc tiếp

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương

A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1

Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung

A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0

Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\)\(x^2_1+x^2_2< 14\) ?

A. 2 B. 1 C. Vô số D. 4

Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị

A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\)

Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo thành 1 tam giác đều

A. \(\sqrt{3}\) B. \(\sqrt[3]{3}\) C. 1 D. 2

Câu 6 : Tìm điều kiện m sao cho đồ thị hàm số y = \(x^4+2mx^2-3\) có 3 điểm cực trị tạo thành 1 tam giác có diện tích nhỏ hơn \(9\sqrt{3}\)

A. \(m>\sqrt{3}\) B. \(m< \sqrt{3}\) C. \(0< m< \sqrt{3}\) D. \(0< m< 1\)

7
AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

$y'=-3x^2+6x+(m-2)=0$

Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$

Hai điểm cực trị cùng dương khi:

\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)

Từ $(1);(2)\Rightarrow -1< m< 2$

Đáp án C.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

Để đths có 2 điểm cực trị thì trước tiên:

$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$

Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$

Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$

$\Leftrightarrow m^2-4< 0$

$\Leftrightarrow -2< m< 2$

Đáp án A.

2 tháng 9 2018

Đáp án: B.

Hàm số đã cho có cực trị khi và chỉ khi

y' = 3 x 2  - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt

⇔ ∆ ' = m - 1 2  + (m + 3) =  m 2  - m + 4 > 0

Ta thấy tam thức  ∆ ' =  m 2  - m + 4 luôn dương với mọi m vì

δ = 1 - 16 = -15 < 0, a = 1 > 0

Vậy hàm số đã cho luôn có cực trị mới mọi m  ∈  R

6 tháng 8 2019

Đáp án: B.

Hàm số đã cho có cực trị khi và chỉ khi

y' = 3 x 2  - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt

⇔ Δ' = ( m - 1 ) 2  + (m + 3) = m 2  - m + 4 > 0

Ta thấy tam thức Δ' =  m 2  - m + 4 luôn dương với mọi m vì

δ = 1 - 16 = -15 < 0, a = 1 > 0

Vậy hàm số đã cho luôn có cực trị mới mọi m ∈ R