Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
Đề bài sai rồi bạn ! Mình sửa :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)
\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-6}{x+1}\)
c) Để P nhận giá trị nguyên
\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)
\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)
Ta loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
a) ĐKXĐ: \(a\ne0\) ; \(a\ne3\) ; \(a\ne-3\)
b) \(P=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow P=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow P=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)
\(\Leftrightarrow P=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{a^2-9-6a+18}{a^2-9}\)
\(\Leftrightarrow P=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{a^2-6a+9}{a^2-9}\)
\(\Leftrightarrow P=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)
\(\Leftrightarrow P=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)
\(\Leftrightarrow P=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)
\(\Leftrightarrow P=\dfrac{a-3}{2a}\)
( ko biết đúng hay ko)
c) \(P=\dfrac{a-3}{2a}=0\)
\(\Leftrightarrow a-3=0\)
\(\Leftrightarrow a=3\left(loai\right)\) ( không thỏa mãn điều kiện )
\(P=\dfrac{a-3}{2a}=1\)
\(\Leftrightarrow a-3=2a\)
\(\Leftrightarrow a-3-2a=0\)
\(\Leftrightarrow-a-3=0\)
\(\Leftrightarrow-a=3\)
\(\Leftrightarrow a=-3\left(loai\right)\) ( không thỏa mãn điều kiện )