Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
b) Tứ giác có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường là hình chữ nhật.
c) Tứ giác các hai đường chéo vuông góc với nhau tại trung điểm của mỗi đường là hình thoi.
a. Đúng vì hình chữ nhật có 4 góc vuông.
b. Sai vì hình thang cân có 2 cạnh bên không song song có 2 đường chéo bằng nhau nhưng hình thang cân đó không là hình chữ nhật.
c. Đúng vì:
Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.
1: Xét tứ giác ABCD có \(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
nên ABCD là hình bình hành
=>ABCD là hình thang
2: Xét ΔAIB và ΔCID có
AI=CI
\(\widehat{AIB}=\widehat{CID}\)
IB=ID
Do đó: ΔAIB=ΔCID
Suy ra: AB=CD và \(\widehat{IAB}=\widehat{ICD}\)
=>AB//CD
Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
là hình bình hình