1.    
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

Trả lời:

a) \(\frac{1}{4}x^2y+5x^3-x^2y^2=x^2\left(\frac{1}{4}y+5x-y^2\right)\)

 b) 5x ( x - 1 ) - 3y ( 1 - x ) = 5x ( x - 1 ) + 3y ( x - 1 ) = ( x - 1 )( 5x + 3y )

 c) 4x- 25 = ( 2x )2 - 52 = ( 2x - 5 )( 2x + 5 )

 d) 6x- 9x2 = 3x ( 2 - 3x )

24 tháng 8 2021

Trả lời:

a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)

b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)

\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)

\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)

NM
24 tháng 8 2021

a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)

b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)

27 tháng 8 2021

Mới tìm ra đáp án ý a thôi nhaaa !!!

undefined

27 tháng 8 2021

a) Theo định lí Bezout ta có:

\(f\left(-5\right)=3.\left(-5\right)^2-5a+27=2\)

\(\Leftrightarrow75-5a+27=2\)

\(\Leftrightarrow102-5a=2\)

\(\Rightarrow a=20\)

b) \(x^3+ax^2+x+b=\left(x^2-x+2\right).\left(x+m\right)\)(Trong đó m là số nguyên)

\(\Leftrightarrow x^3+ax^2+x+b=x^3+x^2.\left(m-1\right)-mx+2m\)

Sử dụng phương pháp đồng nhất hệ số ta có:

\(\hept{\begin{cases}ax^2=m-1\\x=-mx\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=m-1\\m=-1\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-2\end{cases}}\Leftrightarrow a=b=-2\)

20 tháng 8 2021
  1. a, [x^2.(x-3)-(x-3)] :( x-3) = (x-3 ).(x^2-1) : (x-3) =X^2-1

       2  b, (x-y-z)^5-3 = (x-y-z)^2

       3  c, x^2-1

      4  d, 2x^4 + x^2 - 6x^2 + x^3 - 3 - 3x / x^2 - 3
          = x^2(2x^2 + x + 1) - 3(2x^2 + x + 1) / x^2 - 3
           = (2x^2 + x + 1)(x^2 - 3) / x^2 - 3
           = 2x^2 + x + 1

      5  e, 2.(x-1)

    6   f, (2x– 5x2 + 6x – 15) : (2x – 5)

     =(2x3−5x2)+(6x−15)=(2x3−5x2)+(6x−15)

     =x2(2x−5)+3(2x−5)=x2(2x−5)+3(2x−5)

     =(x2+3)(2x−5)=(x2+3)(2x−5)

     =(2x3−5x2+6x−15):(2x−5)=x2+3

20 tháng 8 2021

giúp tui đi

29 tháng 7 2021

Bài 209 : đăng tách ra cho mn cùng làm nhé 

a,sửa đề :  \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)

b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)

c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)

\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)