Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h = 3 R =3\(\sqrt{3}\) ( vì đường cao đồng thời là trung tuyens)
mà h =\(\frac{a\sqrt{3}}{2}\)
=> a =\(\frac{6R}{\sqrt{3}}=6\)
=> S =ah/2 =.6.3.\(\sqrt{3}\)/2 = 9 \(\sqrt{3}\)
Tâm O của đường tròn nội tiếp tam giác đều cũng là giao điểm ba đường trung tuyến, ba đường cao.
Do đó đường cao h=AE=3.OE=3cm.
Trong tam giác đều, h = a√3/2 (a là độ dài mỗi cạnh).
Suy ra Do đó diện tích tam giác ABC là
Ta chọn (D).
áp dụng công thức S=abc/4R với abc là độ dài 3 cạnh của tam giác
cách chứng minh để sau nhé, hiện giờ mình lag quá không chứng minh được
NA/BA = NC/BC
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm)
=> NC-NA=4 (cm)
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2
=> NA= BA*2 =6 (cm)
bài này dễ mà
có nhiêu cách tính lắm
mik sẽ trình bày một cách nha !!!
gọi O là tâm của đường tròn ngoại tiếp tam giác ABC
ta có : tam giác ABC cân taỊ A
mà AO= 1/2 BC=\(3\sqrt{2}\)
nên AO là đường trung tuyến của tam giác ABC
ĐỒNG THỜI CŨNG LÀ ĐƯỜNG cao của tam giác ABC
ta lại có : BC=2R=2*\(3\sqrt{2}\)=6\(\sqrt{2}\)
S của tam giác ABC= 1/2 *AO*BC=1/2*\(3\sqrt{2}\cdot6\sqrt{2}\)=18
vậy diện tich tam giác là 18
bằng 9 đó bạn 100% luôn
biết là bằng 9 rồi nhưng mà (Nhập kết quả dưới dạng số thập phân gọn nhất)
tính sao?????