K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
QT
1
AH
Akai Haruma
Giáo viên
23 tháng 2 2021
Lời giải:
Trước tiên ta tìm giao điểm của 2 ĐTHS:
PT hoành độ giao điểm: $|x^2-4x+3|=x+3$
$\Rightarrow x=0$ hoặc $x=5$
Diện tích hình phẳng giới hạn bởi $(C)$ và $(d)$ là:
\(\int ^5_0(x+3-|x^2-4x+3|)dx=\frac{109}{6}\) (đơn vị diện tích)
CM
9 tháng 6 2019
Chọn B.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = x3 + 3x và y = -x là: x3 + 4x = 0 ⇔ x = 0
Ta có: x3 + 4x ≤ 0, ∀ x ∈ [-2;0].
Do đó:
Phương trình hoành độ giao điểm:
\(x^2+1=x+3\Leftrightarrow x^2-x-2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(S=\int\limits^2_{-1}\left|x^2-x-2\right|dx=\int\limits^2_{-1}\left(-x^2+x+2\right)dx=\left(-\dfrac{1}{3}x^3+\dfrac{1}{2}x^2+2x\right)|^2_{-1}=\dfrac{9}{2}\)