Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB/DC ( tứ giác ABCD là HBH) => góc ABO = góc CDO ( 2 góc slt)
Ta có: BC//AD ( tứ giác ABCD là HBH) => góc CBO = góc ADO ( 2 góc slt)
Ta có: tứ giác ABCD là HBH => giao điểm O là trung điểm của AC và BD
Xét tam giác AEO và tam giác CFO có:
Góc BAO = góc DCO ( cmt)
OA = OC ( O trung điểm của AC )
góc EOA = góc FOC ( đối đỉnh)
=> tam giác AEO = giác CFO ( c.g.c)
=> EO = FO ( 2 cạnh tương ứng) => O là trung điểm của EF
Xét tam giác BHO = tam giác DGO có:
góc CBO = góc ADO (cmt)
OD = OB ( O là trung điểm của DB )
Góc GOD = góc HOB ( đối đỉnh)
=> tam giác BHO = DGO ( g.c.g)
=> HO = GO ( 2 cạnh tương ứng) => O là trung điểm của GH
Xét tứ giác EGFH
ta có: GH cắt EF tại O
Mà O là trung điểm của EF (cmt)
O là trung điểm của GH (cmt)
=> Tứ giác EGFH là hình bình hành.
hình tự vẽ
Gọi giao điểm của AC và BD là O => O là trung điểm của AC, BD => AO=OC;BO=OD
từ điểm O hạ OO' vuông góc với xy tại O' => OO'//DD' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{DD'y}=90^o\))
AO=OC;OO'//DD' => OC là đường trung bình của tứ giác BB'DD' => \(OC=\frac{1}{2}\left(BB'+DD'\right)\)(1)
Mặt khác: BO=OD; OO'//AA' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{AA'y}=90^o\))
=>OC là đường trung bình của tam giác AA'C => \(OC=\frac{1}{2}AA'\)(2)
Từ (1) và (2) => \(\frac{1}{2}AA'=\frac{1}{2}\left(BB'+DD'\right)\Leftrightarrow AA'=BB'+DD'\)(đpcm)