Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)+z\left(x-y\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y+z\right)}=\dfrac{x+y}{x+y+z}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2xz}=\dfrac{\left(x+y\right)^2-z^2}{\left(x-z\right)^2-y^2}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-y-z\right)\left(x-z+y\right)}\)\(=\dfrac{x+y+z}{x-y-z}\)
c) \(\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\dfrac{x^2-1}{x}\)
d) \(\dfrac{4x^2\left(x-2\right)+3\left(x-2\right)}{4x^2\left(3x+1\right)+3\left(3x+1\right)}=\dfrac{\left(x-2\right)\left(4x^2+3\right)}{\left(3x+1\right)\left(4x^2+3\right)}=\dfrac{x-2}{3x+1}\)
a/ +) \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}\)\(\left(1\right)\)
+) \(\dfrac{y}{3}=\dfrac{z}{5}\Leftrightarrow\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Leftrightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
Vậy ..
b/ \(2x=3y=5z\)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Theo t/c dãy tỉ số bằng nhau tcos :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\\\dfrac{y}{10}=5\\\dfrac{z}{6}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=50\\z=30\end{matrix}\right.\)
Vậy..
c/ tương tự
a/ \(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)
\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)
b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
Nhớ mang máng câu này hồi trước có giải rồi. Thôi tự vô tìm đi nha
a, \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{x^2+y^2}{4+16}=\dfrac{2000}{20}=100\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=100.4=400\\y^2=100.16=1600\\z^2=100.25=2500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm20\\y=\pm40\\z=\pm50\end{matrix}\right.\)
Do \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}x=20\\y=40\\z=50\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-20\\y=-40\\z=-50\end{matrix}\right.\)
Vậy ...
b, \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}=\dfrac{14-6}{8}=\dfrac{8}{8}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.3=3\\z-3=1.4=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
Vậy ...
c, \(x-z=-2\Rightarrow x+2=z\)
Do đó \(y.z=12\Leftrightarrow y.\left(x+2\right)=12\Rightarrow xy+2y=12\Rightarrow6+2y=12\)
\(\Rightarrow y=3\Rightarrow x.3=6\Rightarrow x=2\Rightarrow2-z=-2\Rightarrow z=4\)
Vậy x=2; y=3; z=4
\(x^2-25=y\left(y+6\right)\) (1)
\(\Leftrightarrow x^2-y^2-6y-25=0\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)
Xét các trường hợp, ta tìm được các no nguyên của pt (1).
\(x^2+x+6=y^2\) (2)
\(\Leftrightarrow4x^2+4x+24=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)
\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)
Xét các trường hợp, ta tìm được các no nguyên của pt (2).
\(x^2+13y^2=100+6xy\) (3)
\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (3).
\(x^2-4x=169-5y^2\) (4)
\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)
Ta thấy:
\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0
=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)
Vậy pt (4) vô n0.
\(x^2-x=6-y^2\) (5)
\(\Leftrightarrow4x^2-4x=24-4y^2\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (5).
\(y^3=x^3+x^2+x+1\left(1\right)\)
Ta có:
\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)
\(\Rightarrow y>x\)
\(\Rightarrow y\ge x+1\)
\(\Rightarrow y^3\ge\left(x+1\right)^3\)
\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x\le0\)
\(\Leftrightarrow2x\left(x+1\right)\le0\)
\(\Rightarrow-1\le x\le0\) mà x là số nguyên
=> x = - 1 hoặc x = 0
(+) x = - 1
VT = 0
=> y = 0 ; x = - 1 (nhận)
(+) x = 0
VT = 1
=> y = 1 ; x = 0 (nhận)
Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)
\(x^4+x^2+1=y^2\) (2)
(+)
\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)
\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)
(+)
\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)
\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)
Ta thấy:
Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)
=> x = 0
=> y = 1 (nhận)
Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)
Vì x+y+z=6 và \(x^2+y^2+z^2=12\)
Ta có \(x^2+y^2+z^2-x+y+z=12-6\)
Rút gọn: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=6\)
=> \(x+y+z=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)
Tìm x \(\Rightarrow x\left(x-1\right)=x\Rightarrow x-1=1\Rightarrow x=2\)
Tìm y \(\Rightarrow y\left(y-1\right)=y\Rightarrow y-1=1\Rightarrow y=2\)
Tìm z \(\Rightarrow z\left(z-1\right)=z\Rightarrow z-1=1\Rightarrow z=2\)
Vậy \(x=y=z=2\)
\(\hept{\begin{cases}x^2+y^2+z^2=12\\x+y+z=6\end{cases}}\)
Ta có \(\left(x+y+z\right)^2=36\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)
\(\Leftrightarrow12+2xy+2yz+2xz=36\)
\(\Leftrightarrow2xy+2yz+2xz=24\Leftrightarrow xy+yz+xz=12\)
\(\Rightarrow x^2+y^2+z^2=xy+yz+xz=12\)
Mặt khác ta có \(x^2+y^2+z^2\ge xy+yz+xz\)
Dấu \(=\)xảy ra khi \(x=y=z\)
Vậy \(x=y=z=2\)
1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)
\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)
2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)
3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(=\dfrac{x+y+z}{2}\)
12 x 3 y 2 z 2 – 18 x 2 y 2 z 4 = 6 x 2 y 2 z 2 . 2 x – 6 x 2 y 2 z 2 . 3 z 2 = 6 x 2 y 2 z 2 ( 2 x – 3 z 2 )
Vậy đơn thức điền vào chỗ trống là: 6 x 2 y 2 z 2
Đáp án cần chọn là: B