Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ dãy tỉ số bằng nhau đó, ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
hay \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
Do đó, \(\frac{a+b+c+d}{a}=4\) => a=\(\frac{a+b+c+d}{4}\)
\(\frac{a+b+c+d}{b}=4\) =>b=\(\frac{a+b+c+d}{4}\)
\(\frac{a+b+c+d}{c}=4\) =>c=\(\frac{a+b+c+d}{4}\)
\(\frac{a+b+c+d}{d}=4\) => d=\(\frac{a+b+c+d}{4}\)
=>a=b=c=d
a+bc+d
Do đó, M=\(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Vậy M có giá trị là 4
Ta có: 4/9<a/b
=>4b<9a hay 5a+4a>2b+2b
5a-2b>4a+2b
3>4a+2b(1)
Ta có: a/b<10/21
=>21a<10b hay 5a+16a<2b+8b
5a-2b<8b-16a(2)
Từ (1);(2) =>4a+2b<8b-16a
4a+16a<8b-2b
20a<6b
a/b<6/20
Vậy a/b<6/20 thì thỏa mãn đề*nghĩ v*
nhiều bài quá mình chỉ làm được bài 1,3,4,5
bài 2 mình đang suy nghĩ
bạn có thể vào để hỏi bài !
Ta có:
\(\frac{a}{b}<\frac{c}{d}\)
\(ad<\)\(bc\)
\(\Rightarrow3ad<\)\(3bc\)
\(\Rightarrow2ab+3ad<2ab+3bc\)
\(\Rightarrow a\left(2b+3d\right)<\)\(b\left(2a+3c\right)\)
\(\Rightarrow\frac{a}{b}<\)\(\frac{2a+3c}{2b+3d}\)
Vậy ...