Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|-1|+|-2|+|-3|+....+|-199|+|-2001|.9
=1+2+3+....+199+2001.9
=1+2+3+...+18009
Tách (1+2+3+...+199)và +18009
Số số hạng là :(199-1):1+1=199(ssh)
Tổng[(199+1).199]:2=19900
=>Ta có:19900+18009=37909
Ta thấy :
|x + 1| ≥ 0
|x + 3| ≥ 0
.......
|x + 97| ≥ 0
|x + 99| ≥ 0
Cộng vế với vế ta được :
|x + 1| + |x + 3| + ... + |x + 97| + |x + 99| ≥ 0
Hay 51x ≥ 0 Mà 51 > 0 => x ≥ 0
=> |x + 1| + |x + 3| + ... + |x + 97| + |x + 99| = x + 1 + x + 3 + .... + x + 97 + x + 99
= 50x + 2500 = 51x
=> x = 2500
Ta có :
\(\left|x+1\right|\ge0\)
\(\left|x+3\right|\ge0\)
\(\left|x+5\right|\ge0\)
.........
\(\left|x+97\right|\ge0\)
\(\left|x+99\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|+......+\left|x+97\right|+\left|x+99\right|\ge0\)
\(\Rightarrow51x\ge0\)
Mặt khác \(51>0\)
Nên \(x\ge0\)
=> |x + 1| + |x + 3| + |x + 5| + ...... + |x + 99|
= x + 1 + x + 3 + x + 5 + ....... + x + 99 = 51x
=> 50x + (1 + 3 + 5 + ..... + 99) = 51x
Áp dụng công thức tính dãy số ta có :
1 + 3 + 5 + .... + 99 = 2500
=> 50x + 2500 = 51x
=> x = 2500
\(\left|2-x\right|+\left|x+1\right|=5\)
TH1 : \(\left|2-x\right|=\pm5\)
+ ) \(2-x=5\)
\(x=2-5\)
\(x=-3\)
+ ) \(2-x=\left(-5\right)\)
\(x=2-\left(-5\right)\)
\(x=7\)
TH2 : \(\left|x+1\right|=\pm5\)
+ ) \(x+1=5\)
\(x=5-1\)
\(x=4\)
+ ) \(x+1=\left(-5\right)\)
\(x=\left(-5\right)-1\)
\(x=-6\)
2 ) \(\left|x+1\right|+\left|2x+1\right|=22\)
TH1 : \(\left|x+1\right|=\pm22\)
+ ) \(x+1=22\)
\(x=22-1\)
\(x=21\)
+ ) \(x+1=-22\)
\(x=-22-1\)
\(x=-23\)
TH2: \(\left|2x+1\right|=\pm22\)
+ ) \(2x+1=22\)
\(2x=21\)
\(x=\frac{21}{2}\)
+ ) \(2x+1=-22\)
\(2x=-23\)
\(x=\frac{-23}{2}\)
tất cả đều có giá trị lớn nhất bằng 0
a.) tại x=-1
b.) tại x=-5
c.) tại x=-2
d.) tại x=3
a ) Vì |x + 1| ≥ 0 với mọi x
=> - |x + 1| ≤ 0 với mọi x
Dấu "=" xảy ra khi và chỉ khi |x + 1| = 0 => x = - 1
Vậy giá trị lớn nhất của A là 0 tại x = - 1
Các ý khác tương tự
a.Ta có: |-5|+|2|\(\le\)x<|-10|+|-3|
=>5+2\(\le\)x<10+3
=>7\(\le\)x<13
=>x\(\in\){7;8;9;10;11;12}
b. Ta có: |-7| - |-6|<x\(\le\)|-13|-|8|
=>7-6<x\(\le\)13-8
=>1<x\(\le\)5
=>x\(\in\){2;3;4;5}
1.
a) [124 - (20 - 4x)] : 30 + 7 = 11
=> [124 - (20 - 4x)] : 30 = 11 - 7
=> [124 - (20 - 4x)] : 30 = 4
=> 124 - (20 - 4x) = 4 x 30
=> 124 - (20 - 4x) = 120
=> 20 - 4x = 124 - 120
=> 20 - 4x = 4
=> 4x = 20 - 4
=> 4x = 16
=> x = 16 : 4
=> x = 4
Vậy x = 4
b) |2x - 5| = 1
TH1: 2x - 5 = 1
=> 2x = 1 + 5
=> 2x = 6
=> x = 6 : 2
=> x = 3
TH2: 2x - 5 = -1
=> 2x = -1 + 5
=> 2x = 4
=> x = 4 : 2
=> x = 2
Vậy x = 3 hoặc x = 2