Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhỏ hơn
Ta có 2020/2021 <1
2021/2022 <1
2022/2023 <1
2023/2024 <1
Suy ra A=(2021/2021+2021/2022 +2022/2023 +2023/2024) < (1+1+1+1)= 4
Vậy A <4
Chúc bạn học tốt
\(\dfrac{2020}{2021}< 1\)
\(\dfrac{2021}{2022}< 1\)
\(\dfrac{2021}{2022}< 1\)
\(\dfrac{2023}{2024}< 1\)
Do đó: A<4
\(\dfrac{2022}{2021}=\dfrac{2022}{2021}-1=\dfrac{1}{2021}< \dfrac{2021}{2020}-1=\dfrac{1}{2020}=\dfrac{2021}{2020}\)
\(=>\dfrac{2022}{2021}< \dfrac{2021}{2020}\)
2017/2020<2019/2020< 1
1< 2022/2021< 2023/2021
vậy phân số lớn nhất là 2023/2021
ta so sánh với 1:
2017/2020<2019/2020< 1
1< 2022/2021< 2023/2021
nên phân số lớn nhất là phân số cuối: 2023/2021
\(\frac{1}{2\cdot x}-2021-\frac{1}{4}-\frac{1}{12}-\frac{1}{24}-...-\frac{1}{222}=\frac{6}{11}\)
\(\frac{1}{2\cdot x}-2021-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{222}\right)=\frac{6}{11}\)
....
Cái dãy \(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{222}\) nó không có quy luật, không tính được
Sửa đề\(\frac{1}{2x-2021}-\frac{1}{4}-\frac{1}{12}-\frac{1}{24}-...-\frac{1}{220}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{10}-\frac{1}{11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}.\frac{10}{11}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{5}{11}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}=1\)
=> 2x - 2021 = 1
=> 2x = 2022
=> x = 1011
Vậy x = 1011
\(\dfrac{1909}{1910}\) = 1 -\(\dfrac{1}{1910}\) < 1 - \(\dfrac{1}{1911}\) = \(\dfrac{1910}{1911}\)< 1
\(\dfrac{2021}{2020}\) = 1 + \(\dfrac{1}{2020}\) > 1 + \(\dfrac{1}{2022}\) = \(\dfrac{2022}{2021}\) > 1
vậy sắp xếp từ lớn đến bé các phân số như sau:
\(\dfrac{2021}{2020}\), \(\dfrac{2022}{2021}\), \(\dfrac{1910}{1911}\), \(\dfrac{1909}{1910}\)
Ta có:
\(A=\frac{2021^{2021}+1}{2021^{2022}+1}\Leftrightarrow10A=\frac{2021^{2022}+10}{2021^{2022}+1}=1+\frac{9}{2021^{2022}+1}\)
\(B=\frac{2021^{2022}-1}{2021^{2023}-1}\Leftrightarrow10B=\frac{2021^{2023}-10}{2021^{2023}-1}=1-\frac{9}{2021^{2023}-1}\)
Hay ta đang so sánh: \(\frac{9}{2021^{2022}};\frac{9}{2021^{2023}}\)
Mà \(\frac{9}{2021^{2022}}>\frac{9}{2021^{2023}}\)nên \(\frac{2021^{2021}+1}{2021^{2022}+1}>\frac{2021^{2022}-1}{2021^{2023}-1}\)hay\(A>B\)
Vậy \(A>B\)
a: <
b: >