Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x +y)( 9x2 - 3xy + y2)
b) (2x - 5)( 4x2 + 10x + 25)
(đề bài này hay đó)
a) Thể tích hình hộp chữ nhật ABCD.MNPQ là:
V = NM.NP.NB
b) Ta có công thức:
Thể tích = chiều dài x chiều rộng x chiều cao.
Diện tích một đáy = chiều dài x chiều rộng.
+ Cột 1: Chiều dài = 22; Chiều rộng = 14; chiều cao = 5.
Thể tích = 22.14.5 = 1540
Diện tích một đáy = 22.14 = 308.
+ Cột 2: Chiều dài = 18; chiều cao = 6; diện tích một đáy = 90
chiều rộng = 90 : 18 = 5
thể tích = 18.5.6 = 540.
+ Cột 3: chiều dài = 15; chiều cao = 8; thể tích = 1320
chiều rộng = 1320 : 15 : 8 = 11
Diện tích một đáy = 11.15 = 165
+ Cột 4 : chiều dài = 20; diện tích một đáy = 260; thể tích = 2080
chiều rộng = 260 : 20 = 13
chiều cao = 2080 : 260 = 8.
Vậy ta có bảng hoàn chỉnh dưới đây:
Chiều dài | 22 | 18 | 15 | 20 |
Chiều rộng | 14 | 5 | 11 | 13 |
Chiều cao | 5 | 6 | 8 | 8 |
Diện tích một đáy | 308 | 90 | 165 | 260 |
Thể tích | 1540 | 540 | 1320 | 2080 |
a) Ta có: 27\(x^3\)+ y\(^3\) = (3x)\(^3\) + y\(^3\)= (3x + y)[(3x)\(^2\) – 3x . y + y\(^2\)] = (3x + y)(9x\(^2\) – 3xy + y\(^2\))
Nên: (3x + y) (9x\(^2\) – 3xy + y\(^2\)) = 27x\(^3\) + y\(^3\)
b) Ta có: 8x\(^3\) – 125 = (2x)\(^3\) – 53= (2x – 5)[(2x)\(^2\) + 2x . 5 + 5\(^2\)]
= (2x – 5)(4x\(^2\) + 10x + 25)
Nên:(2x – 5)(4x\(^2\) + 10x + 25)= 8x\(^3\) – 125
Trả lời:
a) Ta có:
27x3 + y3 = (3x)3 + y3= (3x + y)[(3x)2 – 3x . y + y2] = (3x + y)(9x2 – 3xy + y2)
Nên: (3x + y) (9x2 – 3xy + y2 ) = 27x3 + y3
b) Ta có:8x3 - 125 = (2x)3 - 53= (2x - 5)[(2x)2 + 2x . 5 + 52]
= (2x - 5)(4x2 + 10x + 25)
Nên: (2x - 5)(4x2+ 10x +25 ) = 8x3 - 125
a) Ta có thể nhận thấy đây là hằng đẳng thức (6).
27x3 + y3
= (3x)3 + y3
= (3x + y)[(3x)2 – 3x.y + y2] (Áp dụng HĐT (6) với A = 3x, B = y)
= (3x + y)(9x2 – 3xy + y2)
Vậy ta cần điền :
b) Ta có thể nhận thấy đây là hằng đẳng thức (7)
8x3 – 125
= (2x)3 – 53
= (2x – 5).[(2x)2 + (2x).5 + 52] (Áp dụng HĐT (7) với A = 2x, B = 5)
= (2x – 5).(4x2 + 10x + 25)
Vậy ta cần điền :