K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2023

a) Vận động viên A : Khoảng biến thiên =2, Độ lệch chuẩn =0,7.
Vận động viên B : Khoảng biến thiên =5, Độ lệch chuẩn \approx 1,64.
b) Vì khoảng biến thiên, độ lệch chuẩn về thành tích của vận động viên A đều nhỏ hơn của vận động viên B nên dựa trên các tiêu chí này ta có thể kết luận vận động viên A có thành tích ổn định hơn.

19 tháng 8 2017

Cách 1: x = n 1 x 1 + n 2 x 2 + n 3 x 3 + n 4 x 4 + n 5 x 5 n = 4 . 6 + 3 . 7 + 5 . 8 + 9 . 9 + 6 . 10 30 ≈ 8 , 33  

Cách 2: Sử dụng máy tính Casio fx - 570 VNPLUS

+ Nhập  (vào chế độ thống kê).

+ Nhập (hiển thị cột tần số).

+ Nhập  (nhập giá trị).

+ Nhập , sau đó ấn .

+ Tính giá trị trung bình: Ấn 

⇒ x = 8 , 3333333 …

Đáp án A.

21 tháng 12 2023

'''''''''''''F'F'S'JURSMJHYT,JTHDNHTDNMYHJFGJHTMJHTMJYT

31 tháng 3 2017

Cách 1:

+ Giá trị đại diện mỗi lớp: c 1 = 18 ;   c 2 = 22 ;   c 3 = 26 ;   c 4 = 30 ;   c 5 = 34  

+ Số trung bình cộng:

x = n 1 c 1 + n 2 c 2 + n 3 c 3 + n 4 c 4 + n 5 c 5 n 1 + n 2 + n 3 + n 4 + n 5 = 10 . 18 + 12 . 22 + 14 . 26 + 9 . 30 + 5 . 34 50 ≈ 25  

+ Độ lệch chuẩn:

s = s 2 = 10 18 - 25 2 + 12 22 - 25 2 + 14 26 - 25 2 + 9 30 - 25 2 + 5 34 - 25 2 50  

≈ 5 , 0  

Cách 2: Sử dụng máy tính Casio fx - 570 VNPLUS

+ Nhập  (vào chế thống kê).

 

+ Nhập  (hiển thị cột tần số).

 

+ Nhập  (nhập giá trị).

 

+ Nhập  (nhập tần số), sau đó ấn .

 

+ Nhập 

  ⇒ δ x = 4 , 983813801

(Lưu ý: Đối với Ví dụ 2, phương sai s 2 = 24 , 9 ).

Đáp án C.

14 tháng 5 2017

Điểm số của xạ thủ A có:

x   ≈   8 , 3   đ i ể m ,   s 1 2 ≈   1 , 6 ;   s 1   ≈   1 , 27 .

Điểm số của xạ thủ B có

y   ≈   8 , 4   đ i ể m ,   s 2 2 ≈   1 , 77 ;   s 2   ≈   1 , 27 .

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:

9   8   15   8   20

Số trung bình: \(\overline X = \dfrac{{9 + 8 + 15 + 8 + 20}}{5} = 12\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

8  8  9  15  20

Ta có n=5 là số lẻ nên trung vị là 9.

Mốt: Ta thấy số 8 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 9=> \({Q_2} = 9\).

+ Tìm \({Q_1}\)

Nửa số liệu bên trái là:

8  8

Trung vị của mẫu này là \(\dfrac{{8 + 8}}{2} = 8\)=>\({Q_1} = 8\)

+ Tìm \({Q_3}\)

Nửa số liệu bên phải là:

15  20

Trung vị của mẫu này là \(\dfrac{{15 + 20}}{2} = 17,5\)=>\({Q_3} = 17,5\)

Vậy số trung bình là 12, trung vị là 9 và mốt là 8, \({Q_1} = 8\), \({Q_3} = 17,5\)

b) Giá của một số loại giày (đơn vị nghìn đồng):

350  300  650  300  450  500  300  250

Số trung bình: \(\overline X ) \( = \dfrac{{350 + 300.3 + 650 + 450 + 500 + 250}}{8}\) \( = 387,5\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

250  300  300  300  350  450  500  650

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 300 và 350

=> Trung vị là \(\dfrac{{300 + 350}}{2} = 325\)

Mốt: Ta thấy số 300 là số có tần số cao nhất (xuất hiện 3 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 325=> \({Q_2} = 325\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

250  300  300  300

Trung vị của mẫu này là \(\dfrac{{300 + 300}}{2} = 300\)=>\({Q_1} = 300\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

350  450  500  650

Trung vị của mẫu này là \(\dfrac{{450 + 500}}{2} = 475\)=>\({Q_3} = 475\)

Vậy số trung bình là 387,5, trung vị là 325 và mốt là 300, \({Q_1} = 300\), \({Q_3} = 475\)

c) Số kênh được chiếu của một số hãng truyền hình cáp:

36  38  33  34  32  30  34  35

Số trung bình: \(\overline X = \dfrac{{36 + 38 + 33 + 34.2 + 32 + 30 + 35}}{8} = 34\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

30  32  33  34  34  35  36  38

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 34 và 34

=> Trung vị là 34

Mốt: Ta thấy số 34 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 34=> \({Q_2} = 34\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

30  32  33  34

Trung vị của mẫu này là \(\dfrac{{32 + 33}}{2} = 32,5\)=>\({Q_1} = 32,5\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

34  35  36  38

Trung vị của mẫu này là \(\dfrac{{35 + 36}}{2} = 35,5\)=>\({Q_3} = 35,5\)

Vậy số trung bình là 34, trung vị là 34 và mốt là 34, \({Q_1} = 32,5\), \({Q_3} = 35,5\)

Chú ý

Nếu n chẵn thì nửa số liệu bên trái (phải) \({Q_2}\) phải chứa cả \({Q_2}\)

4 tháng 3 2019

a) * Lớp 10C:

Giải bài 2 trang 128 SGK Đại Số 10 | Giải toán lớp 10

* Lớp 10D:

Giải bài 2 trang 128 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 2 trang 128 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 2 trang 128 SGK Đại Số 10 | Giải toán lớp 10

b) Kết quả lớp 10D có độ lệch chuẩn nhỏ hơn kết quả lớp 10C nên kết quả lớp 10D đồng đều hơn.

27 tháng 3 2017

Đáp án D.

+ Điểm trung bình của 100 học sinh là: x = 15 , 09  

+ Độ lệch chuẩn:

S = 1 100 2 . 9 - 15 , 09 2 + 1 . 10 - 15 , 09 2 + . . . + 3 . 19 - 15 , 09 2  

S ≈ 2 , 17  

Chú ý: Cách sử dụng máy tính bỏ túi

Bước 1: Vào chế độ thống kê:

Bước 2: Hiển thị cột tần số:

Bước 3: Nhập các giá trị: nhập lần lượt từng giá trị, nhập xong mỗi giá trị ấn phím  để lưu vào máy.

 

Bước 4: Nhập tần số: Sau khi nhập đủ các giá trị, dùng phím  để di chuyển con trỏ trở về đầu cột tần số.

 

Nhập lần lượt tần số tương ứng với mỗi giá trị.

Kết thúc ấn phím  để thoát khỏi màn hình thống kê hai cột.

 

Bước 5: * Tính giá trị trung bình:

* Tính độ lệch chuẩn s:

(Tính phương sai s2 ta ấn tiếp phím )

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Sắp xếp lại:

7  9  9  10  10  10  11  12  12  14

Trung vị \({Q_2} = \dfrac{{10 + 10}}{2} = 10\)

Nửa trái \({Q_2}\): 7  9  9  10  10 

\({Q_1} = 9\)

Nửa phải: 10  11  12  12  14

\({Q_3} = 12\)

Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1} = 12 - 9 = 3\)