Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
*Cho số phức z = a + bi.
Ta gọi số phức a – bi là số phức liên hợp của z và kí hiệu là .
Vậy ta có z = a + bi thì ¯zz¯ = a – bi
*Số phức z bằng số phức liên hợp của nó ⇔ a = a và b = -b
⇔ a ∈ R và b = 0 ⇔ z là một số thực.
\(A=\left(\frac{1+i}{1-i}\right)^{11}=\left(i\right)^{11}=i\cdot\left(i^2\right)^5=-i\)
\(B=\left(\frac{2i}{1+i}\right)^8=\left(1+i\right)^8=\left[\left(1+i\right)^2\right]^4=\left(2i\right)^4=16\)
\(\Rightarrow\overline{z}=16-i\Leftrightarrow z=16+i\)
Vậy \(\left|\overline{z}+iz\right|=\left|15+15i\right|=15\sqrt{2}\)
Giải:
Đặt \(z=a+bi\) với $a,b$ là các số thực
Ta có:
\(|z-3+4i|=2\Leftrightarrow |(a-3)+i(b+4)|=2\)
\(\Leftrightarrow (a-3)^2+(b+4)^2=4\)
Vậy tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \((3;-4)\) bán kính \(R=2\)
Cho số phức z thỏa mãn \(\left(1+i\right)z+2\overline{z}=2\)
Tính môdun của số phức \(\omega=z+2+3i\)
Giả sử: \(z=x+yi\) \((x;y\in|R)\)
Ta có: \((1+i)z+2\overline{z}=2\)
<=> \((1+i)(x+yi)+2(x-yi)=2\)
<=> \(x+yi+xi-y+2x-2yi-2=0\)
<=> \((3x-y-2)+(x-y)i=0\)
<=> \(\begin{align} \begin{cases} 3x-y&=2\\ x-y&=0 \end{cases} \end{align}\)
<=> \(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)
=> \(z=1+i\)
Ta có: \(\omega=z+2+3i \)
\(=1+i+2+3i\)
\(=3+4i\)
=> \(|\omega|=\sqrt{3^2+4^2}=5\)
Đặt \(z=a+bi\left(a,b\in R\right)\)
Theo bài ta có : \(\begin{cases}3a-b=2\\a-b=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) nên \(z=1+i\)
Khi đó \(\omega=z+2+3i=1+i+2+3i=3+4i\)
Vậy \(\left|\omega\right|=\sqrt{3^2+4^2}=5\)
gọi \(z=a+bi\) với \(\left(a;b\in Z;i^2=-1\right)\)
ta có : \(z^4-1=0\Leftrightarrow\left(a+bi\right)^4-1=0\)
\(\Leftrightarrow a^4+4a^3bi+6a^2b^2i^2+4ab^3i^3+b^4i^4-1=0\)
\(\Leftrightarrow a^4+4a^3bi-6a^2b^2-4ab^3i+b^4-1=0\)
\(\Leftrightarrow\left(a^4-6a^2b^2+b^4-1\right)+\left(4a^3b-4ab^3\right)i=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^4-6a^2b^2+b^4-1=0\\4a^3b-4ab^3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4ab\left(a-b\right)\left(a+b\right)=0\\a^4-6a^2b^2+b^4-1=0b+++b^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\b=0\\a=b\\a=-b\end{matrix}\right.\\a^4-6a^2b^2+b^4-1=0\end{matrix}\right.\)
với \(a=0\Rightarrow b=\pm1\)
với \(b=0\Rightarrow a=\pm1\)
với \(a=b\Rightarrow\)\(vônghiệm\)
với \(a=-b\Rightarrow\) \(vônghiệm\)
\(\Rightarrow z=1;z=-1;z=i;z=-i\)
vậy có 4 điểm biểu diển của số phức \(z\)
a) Tập hợp các điểm M(x; y) của mặt phẳng tọa độ biểu diễn số phức z = x +yi thỏa mãn điều kiện:
|z|<2 ⇔ √(x2+y2 )<2 ⇔x2+y2<4
Các điểm M(x; y) như vậy nằm trong đường tròn có tâm O bán kính bằng 2 không kể các điểm trên đường tròn.
b) Giả sử z=x+yi=>z-i=z+(y-1)i
|z-1|≤1 ⇔ √(x2 (y-1)2 )≤1 ⇔x2+(y-1)2≤1
Tập hợp tất cả các điểm biểu diễn các số phức thỏa mãn |z – 1|≤1 là các điểm của hình tròn tâm (0; 1) bán kính bằng 1 kể cả biên.
c) z=x+yi=>z-1-i=(x-1)+(y-1)i
|z-1-i|<1 ⇔ (x-1)2+(y-1)2<1
Tập hợp các điểm đang xét là các điểm của hình tròn ( không kể biên) tâm (1;1), bán kính bằng 1.
Em chỉ thử sức thôi chứ em cũng không rõ lắm ạ
đặt z = x +yi
a) \(\left|Z\right|\)<2
<=> \(\left|x+yi\right|\)<2 <=> \(\sqrt{x^2+y^2}\)<2 <=> x2 +y2 <4
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(0;0) bán kính R=2 không tính biên
b) \(\left|z-i\right|\)\(\le\)1
\(\Leftrightarrow\)\(\left|x +yi-i\right|\le1\Leftrightarrow\sqrt{x^2+\left(y-1\right)^2}\le1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2\le1\)
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(0,1) bán kính R=1 tính cả biên
c) \(\left|z-1-i\right|\)<1
\(\Leftrightarrow\left|x+yi-1-i\right|< 1\\ \Leftrightarrow\sqrt{\left(x-1\right)^2+\left(y-1\right)^2}< 1\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2< 1\)
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(1;1) bán kính R=1 không tính biên
Chọn C