K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

Phương trình hoành độ giao điểm:  - x 2 + 2 x + 3 = m x ⇔ x 2 + m - 2 x - 3 = 0 1

Dễ thấy (1) luôn có 2 nghiệm phân biệt vì  a c = 1 . - 3 = - 3 < 0

Khi đó (d) cắt (P) tại hai điểm phân biệt  A x 1 ; m x 1 B x 2 ; m x 2 , với  x 1 ,   x 2  là nghiệm phương trình (1). Theo Viét, có:  x 1 + x 2 = 2 - m , x 1 x 2 = - 3 x 1 x 2 = - 3

I là trung điểm

A B ⇒ I = x 1 + x 2 2 ; m x 1 + m x 2 2 = 2 − m 2 ; − m 2 + 2 m 2

I ∈ ( Δ ) : y = x − 3 ⇒ − m 2 + 2 m 2 = 2 − m 2 − 3 ⇔ m 2 − 3 m − 4 = 0

⇔ m = − 1 = m 1 m = 4 = m 2 ⇒ m 1 + m 2 = 3

Đáp án cần chọn là: D

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Có thể tạo nên một đoạn phân tử RNA có 4 phân tử nucleotide là một công việc gồm 4 công đoạn, mỗi công đoạn ứng với việc chọn một trong ba loại nucleotide C, G hoặc U cho mỗi vị trí (thứ nhất, thứ hai, thứ ba và cuối cùng) của đoạn. Như vậy, mỗi công đoạn có 3 cách thực hiện. Theo quy tắc nhân, 4 công đoạn có số cách thực hiện là

                   \(3.3.3.3 = {3^4}\)

Vậy có nhiều nhất \({3^4}\)đoạn phân tử RNA khác nhua cùng có 4 phân tử nucleotide và không có nucleotide A

b)

Có thể tạo nên một đoạn phân tử RNA có 4 phân tử nucleotide là một công việc gồm 4 công đoạn, mỗi công đoạn ứng với việc chọn một trong ba loại nucleotide C, G hoặc U cho mỗi vị trí (thứ nhất, thứ hai, thứ ba và cuối cùng) của đoạn.

Công đoạn thứ nhất: Chọn nucleotide A ở vị trí đầu tiên, có 1 cách chọn

Công đoạn thứ hai: Chọn một trong bốn loại nucleotide A, C, G hoặc U cho mỗi vị trí (thứ hai, thứ 3 và vị trí cuối) của đoạn. Như vậy mỗi công đoạn sau sẽ có 4 cách thực hiện.

Theo quy tắc nhân, 4 công đoạn thực hiện có số cách là

                             \(1.4.4.4 = {4^3}\)

Vậy có nhiều nhất \({4^3}\)đoạn phân tử RNA khác nhau chứa 4 phân tử nucleotide có nucleotide A nằm ở vị trí đầu tiên.

Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?b) Xác định vị trí của C...
Đọc tiếp

Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.

a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?

b) Xác định vị trí của C trên nửa đường tròn tâm O để đường tròn ngoại tiếp tam giác MNQ tiếp xúc với (O).

Bài 12: Cho tứ giác ABCD có đường chéo BD không là phân giác của góc ABC và góc CDA.Một điểm P nằm trong tứ giác sao cho góc PBC=góc DBA; góc PDC = góc BDA.Chứng minh rằng tứ giác ABCD nội tiếp khi và chỉ khi AP=CP

Bài 13:Cho tam giác ABC có chu vi bằng 2p không đổi ngoại tiếp 1 đường tròn(O).Dựng tiếp tuyến MN với (O) sao cho MN song song với AC;M thuộc cạnh AB,N thuộc cạnh BC.Tính AC theo p để độ dài đoạn MN đạt giá trị lớn nhất.

Bài 14: Trong một tam giác cho trước hãy tìm bán kính lớn nhất của hai đường tròn bằng nhau tiếp xúc ngoài nhau đồng thời mỗi đường tròn tiếp xúc với hai cạnh của tam giác đó.

Bài 15: Trên cạnh AB của tam giác ABC lấy một điểm D sao cho đường tròn nột tiếp tam giác ACD và BCD bằng nhau

a) Tính đoạn CD theo các cạnh của tam giác

b)CMR: Điều kiện cần và đủ để góc C = 90 độ là điện tích tam giác ABC bằng diện tích hình vuông cạnh CD

Bài 16: Cho hình thang vuông ABCD có AB là cạnh đáy nhỏ,CD là cạnh đáy lớn,M là giao của AC và BD.Biết rằng hình thang ABCD ngoại tiếp đường tròn bán kính R.Tính diện tích tam giác ADM theo R

Bài 17:Cho tam giác ABC không cân,M là trung điểm cạnh BC,D là hình chiếu vuông góc của A trên BC; E và F tương ứng là các hình chiếu vuông góc của B và C trên đường kính đi qua A của đường tròn ngoại tiếp tam giác ABC.CMR: M là tâm đường tròn ngoại tiếp tam giác DEF

Bài 18: Cho đoạn thẳng AB, điểm C nằm giữa A và B, Tia Cx vuông góc với AB.Trên tia Cx lấy D và E sao cho CECB=CACD=3√CECB=CACD=3. Đường tròn ngoại tiếp tam giác ADC cắt đường tròn ngoại tiếp tam giác BEC tại H(H khác C). CMR: HC luôn đi qua một điểm cố định khi C chuyển động trên đoạn AB.Bài toán còn đúng không khi thay 3√3 bởi m cho trước(m>0)

Bài 19: Cho tam giác ABC nhọn và điểm M chuyện động trên đường thẳng BC.Vẽ trung trực của các đoạn BM và CM tương ứng cắt các đường thẳng AB và AC tại P và Q.CMR: Đường thẳng qua M và vuông góc với PQ đi qua 1 điểm cố định

Bài 20: Cho tam giác ABC và một đường tròn (O) đi qua A và C.Gọi K và N là các giao điểm của (O) với các cạnh AB,C.ĐƯờng tròn (O1) và (O2) ngoại tiếp tam giác ABC và tam giác KBN cắt nhau tại B và M.CMR: O1O2 song song với OM

 

Giúp t vs..^^^

6
21 tháng 2 2016

Dài thế này ai mà lm đc cho m k lm nữa

6 tháng 3 2016

làm hết dc đống bài này chắc mình ốm mấtkhocroi

31 tháng 7 2018

Tổng số cạnh và đường chéo của đa giác n cạnh là n(n-1)/2, suy ra số đường chéo của đa giác là

Vì mỗi đường chéo xác định hai vectơ, nên tổng số vectơ là n(n – 3)

Đáp án D

5 tháng 9 2021

undefined

Quỹ đạo của P không phải là đường tròn :((

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề “Mọi số nguyên đều viết được dưới dạng phân số” đúng.

Vì \(\forall a \in \mathbb{Z}:a = \dfrac{a}{1}\)

Hoặc: \(a \in \mathbb{Z} \subset \mathbb{Q}\) => mỗi số nguyên cũng là một phân số.

b) Mệnh đề "Tập hợp các số thực chứa tập hợp các số hữu tỉ" là mệnh đề đúng.

c) Mệnh đề “Tồn tại một số thực không là số hữu tỉ” đúng.

Ví dụ: \(\sqrt 2 \) ( vì \(\sqrt 2  \in \mathbb{R};\;\sqrt 2  \notin \mathbb{Q}\)).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Từ điểm cuối của vectơ \(\overrightarrow {{\mu _1}} \) vẽ vectơ \(\overrightarrow {{\mu _3}}  = \overrightarrow {{\mu _2}} \)

Suy ra \(\overrightarrow \mu   = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _2}}  = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}}  \Rightarrow \left| {\overrightarrow \mu  } \right| = \left| {\overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}} } \right|\)

Ta có: \(\left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _2}} } \right) = 120^\circ  \Rightarrow \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right) = 60^\circ \)

\( \Rightarrow {\left| {\overrightarrow \mu  } \right|^2} = {\left| {\overrightarrow {{\mu _1}} } \right|^2} + {\left| {\overrightarrow {{\mu _3}} } \right|^2} - 2\left| {\overrightarrow {{\mu _1}} } \right|\left| {\overrightarrow {{\mu _3}} } \right|\cos \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right)\)

          \( = 1,{6^2} + 1,{6^2} - 2.1,6.1,6.\cos 60^\circ  = \frac{{64}}{{25}}\)

\( \Rightarrow \left| {\overrightarrow \mu  } \right| = \sqrt {\frac{{64}}{{25}}}  = 1,6\)

Vậy độ dài của \(\overrightarrow \mu  \) là 1,6 đơn vị