Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ
Theo đề có AB là tiếp tuyến của (O) nên \(AB\perp OB\Rightarrow\widehat{ABO}=90^o\)
Trong tam giác vuông ABO có : OB = R ; OA = 2R nên cos \(\widehat{AOB}=\frac{OB}{OA}=\frac{1}{2}\Rightarrow\widehat{AOB}=60^o\)
Theo t/c 2 tiếp tuyến cắt nhau nên ta có AO là phân giác \(\widehat{BOC}\Rightarrow\widehat{AOC}=60^o\)
mà \(\widehat{AOC}\)và \(\widehat{COD}\)kề bù nên suy ra \(\widehat{COD}=120^o\)

a: Xét tứ giác OBAC có \(\hat{OBA}+\hat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp đường tròn đường kính OA
=>O,B,A,C cùng thuộc đường tròn đường kính OA
ta có: OI+IA=OA
=>IA=OA-OI=2R-R=R
=>OI=IA
=>I là trung điểm của OA
=>Tâm của đường tròn chứa bốn điểm O,A,B,C là I
b:
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
ta có; OK⊥OB
OB⊥BA
Do đó: OK//BA
=>\(\hat{KOA}=\hat{BAO}\) (hai góc so le trong)
mà \(\hat{BAO}=\hat{KAO}\) (AO là phân giác của góc BAC)
nên \(\hat{KOA}=\hat{KAO}\)
=>ΔKOA cân tại K
c: ΔKOA cân tại K
mà KI là đường trung tuyến
nên KI⊥OA tại I
=>KI⊥OI tại I
=>KI là tiếp tuyến của (O)

a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>\(BC=\sqrt{AB^2-AC^2}=R\sqrt{3}\)
b: Ta có: ΔOAC cân tại O
mà OD là đường cao
nên OD là tia phân giác của góc COA
Xét ΔOCD và ΔOAD có
OC=OA
\(\widehat{COD}=\widehat{AOD}\)
OD chung
Do đó: ΔOCD=ΔOAD
Suy ra: \(\widehat{OCD}=\widehat{OAD}=90^0\)
hay AD là tiếp tuyến của (O)