K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

\(=\frac{6xyz^2+9xyz^2-4xyz^2}{12}=\frac{3xyz^2}{4}\)

30 tháng 3 2019

cảm ơn bn nhìu nhahihi

24 tháng 9 2021

a) \(2x=5y\)\(x=\dfrac{5}{2}y\)\(xy=\dfrac{5}{2}y^2\)

Thay \(xy=250\), ta có:

\(250=\dfrac{5}{2}y^2\)

\(y^2=100\)\(y=+-10\)

+) \(y=10\text{⇒}x=250:10=25\)

+) \(y=-10\text{⇒}x=250:-10=-25\)

24 tháng 9 2021

\(a,2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=k\\ \Rightarrow x=5k;y=2k\\ xy=250\Rightarrow5k\cdot2k=250\Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=25;y=10\\x=-25;y=-10\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}=a\Rightarrow x=3a;y=2a;z=4a\\ xyz=192\Rightarrow24a^3=192\Rightarrow a^3=8\Rightarrow a=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=4\\z=8\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=q\Rightarrow x=5q;y=2q;z=-3q\\ xyz=240\Rightarrow-30q^3=240\Rightarrow q^3=-8\Rightarrow q=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-10\\y=-4\\z=6\end{matrix}\right.\)

1 tháng 5 2017

a) = 4x2y3

b) = 4/2x2y

c) = xyz2

\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)

=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)

=>x+1=4k; y-2=2k; z+2=3k

=>x=4k-1; y=2k+2; z=3k-2

xyz=12

=>(4k-1)(2k+2)(3k-2)=12

=>(4k-1)(k+1)(3k-2)=6

=>(4k-1)(3k^2-2k+3k-2)=6

=>(3k^2+k-2)(4k-1)=6

=>12k^3-3k^2+4k^2-k-8k+2-6=0

=>12k^3+k^2-9k-7=0

=>

\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)

=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)

=>x+1=4k; y-2=2k; z+2=3k

=>x=4k-1; y=2k+2; z=3k-2

xyz=12

=>(4k-1)(2k+2)(3k-2)=12

=>(4k-1)(k+1)(3k-2)=6

=>(4k-1)(3k^2-2k+3k-2)=6

=>(3k^2+k-2)(4k-1)=6

=>12k^3-3k^2+4k^2-k-8k+2-6=0

=>12k^3+k^2-9k-4=0

=>k=1

=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Phân thức số 2 có thật sự là $\frac{z}{y-2}$ không bạn? Bạn xem lại đề.

18 tháng 4 2017

Tính tổng của các đơn thức: \(\dfrac{3}{4}\) xyz2; \(\dfrac{1}{2}\)xyz2; -\(\dfrac{1}{4}\)xyz2

\(\dfrac{3}{4}\) xyz2 + \(\dfrac{1}{2}\)xyz2 + (-\(\dfrac{1}{4}\)xyz2) = ( \(\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{1}{4}\)) xyz2 = xyz2.


18 tháng 4 2017

Hướng dẫn giải:

Tính tổng của các đơn thức: 3434 xyz2; 1212xyz2; -1414xyz2

3434 xyz2 + 1212xyz2 + (-1414xyz2) = ( 3434 + 1212 - 1414) xyz2 = xyz2.

Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2}{2^2}=\dfrac{y^2}{3^2}=\dfrac{z^2}{5^2}\rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1`

`-> x/2=y/3=z/5=1`

`-> x=2*1=2, y=3*1=3, z=5*1=5`

=>x/2=y/3=z/5 và x-y+z=4

Áp dụng tính chất của DTSBN, ta được:

x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1

=>x=2; y=3; z=5

31 tháng 7 2018

\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+3}\)

\(\Leftrightarrow\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}\)

Đặt \(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}\)\(=k\Leftrightarrow\left\{{}\begin{matrix}x=4k-1\\y=2k+2\\z=3k-3\end{matrix}\right.\)

\(xyz=12\)

\(\Leftrightarrow4k-1+2k+2+3k-3=12\)

\(\Leftrightarrow9k-2=12\)

\(\Rightarrow k=\dfrac{14}{9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{47}{9}\\y=\dfrac{46}{9}\\z=\dfrac{5}{3}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

1 tháng 8 2018

xyz nghĩa là x.y.z

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)