\(\dfrac{x\sqrt{x}}{\sqrt{x}+2}-2\sqrt{x}\)

\(B=\dfrac{sin+cos...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

\(\dfrac{x\sqrt{x}}{\sqrt{x}+2}-2\sqrt{x}\left(dk:x\ge0\right)\\ =\dfrac{x\sqrt{x}-2\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\\ =\dfrac{x\sqrt{x}-2x-4\sqrt{x}}{\sqrt{x}+2}\)

\(\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\)

\(tan=3\\ cot=\dfrac{1}{3}\)

Ta có : \(1+tan^2=\dfrac{1}{cos^2}\Rightarrow1+3^2=\dfrac{1}{cos^2}\Rightarrow cos=\dfrac{\sqrt{10}}{10}\)

\(sin=\sqrt{1-cos^2}=\sqrt{1-\left(\dfrac{\sqrt{10}}{10}\right)^2}=\dfrac{3\sqrt{10}}{10}\)

\(B=\dfrac{sin+cos}{sin^3+cos^3}=\dfrac{sin+cos}{\left(sin+cos\right)\left(sin^2+cos^2-sincos\right)}=\dfrac{1}{1-sincos}\)

\(=\dfrac{1}{1-\dfrac{3\sqrt{10}}{10}.\dfrac{\sqrt{10}}{10}}=\dfrac{10}{7}\)

Vậy \(B=\dfrac{10}{7}\)

1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)

\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)

\(=1\)

2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)

\(=\dfrac{1}{sin^2x-cos^2x}\)

\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)

\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)

=>VT=VP

28 tháng 7 2018

ta có : \(\dfrac{sin^2x-cos^2x}{sinx.cosx}=\dfrac{\dfrac{sin^2x}{cos^2x}-\dfrac{cos^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}}\) \(=\dfrac{tan^2x-1}{tanx}=\dfrac{\left(\sqrt{3}\right)^2-1}{\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)

DD
24 tháng 6 2021

a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)

\(cosx=\frac{1}{2}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

\(cosx=\frac{-1}{2}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)

b) Bạn làm tương tự câu a) nha. 

6 tháng 5 2017

Đặt \(f\left(A,B,C\right)=cosA+cosB+cosC+\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}-2\sqrt{3}-\dfrac{3}{2}\)

Ta có: \(f\left(A,B,C\right)-f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\)

\(=\left(cosB+cosC-2cos\left(\dfrac{B+C}{2}\right)\right)+\left(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\right)\)

\(=2cos\left(\dfrac{B+C}{2}\right)\left(cos\left(\dfrac{B-C}{2}\right)-1\right)+\left(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\right)\left(1\right)\)

Bên cạnh đó ta có:

\(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\ge\dfrac{4}{sinB+sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}=\dfrac{4\left(1-cos\left(\dfrac{B-C}{2}\right)\right)}{sinB+sinC}\)

Do đó \(\left(1\right)\ge2\left(1-cos\left(\dfrac{B-C}{2}\right)\right)\left(\dfrac{2}{sinB+sinC}-cos\left(\dfrac{B+C}{2}\right)\right)\)

\(=\left(1-cos\left(\dfrac{B-C}{2}\right)\right)\left(\dfrac{1-sin\left(\dfrac{B+C}{2}\right)cos\left(\dfrac{B+C}{2}\right)cos\left(\dfrac{B-C}{2}\right)}{sinB+sinC}\right)\ge0\)

\(\Rightarrow f\left(A,B,C\right)\ge f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\)

Giờ ta chỉ cần chứng minh bất đẳng thức đúng trong trường hợp tam giác cân.

Ta có: \(\left\{{}\begin{matrix}B=\dfrac{\pi}{2}-\dfrac{A}{2}\\cosB=cosC=\dfrac{sinA}{2}\\sinB=sinC=\dfrac{cosA}{2}\end{matrix}\right.\)

\(f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)=\left(cosA+2sin\left(\dfrac{A}{2}\right)-\dfrac{3}{2}\right)+\left(\dfrac{1}{sinA}+\dfrac{2}{cos\left(\dfrac{A}{2}\right)}-2\sqrt{3}\right)\)

\(=\dfrac{-2\left(sin\left(\dfrac{A}{2}\right)-1\right)^2}{2}+\dfrac{1+4sin\left(\dfrac{A}{2}\right)-2\sqrt{3}sinA}{sinA}\)

Mà ta có: \(1\ge sin\left(\dfrac{A}{2}+\dfrac{\pi}{3}\right)\)

\(\Rightarrow8sin\left(\dfrac{A}{2}\right)\ge2\sqrt{3}sinA+4sin^2\left(\dfrac{A}{2}\right)\)

\(\Rightarrow1+4sin\left(\dfrac{A}{2}\right)-2\sqrt{3}sinA\ge4sin^2\left(\dfrac{A}{2}\right)-4sin\left(\dfrac{A}{2}\right)+1=\left(2sin\left(\dfrac{A}{2}-1\right)\right)^2\)

Từ đó ta suy ra:

\(f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\ge\left(2sin-1\right)^2\left(\dfrac{1}{sinA}-\dfrac{1}{2}\right)\ge0\)

Vậy bài toán đã được chứng minh. Dấu = xảy ra khi \(A=B=C=\dfrac{\pi}{3}\)

6 tháng 5 2017

Hàm số \(f\left(x\right)=\cos\left(x\right)+\dfrac{1}{\sin\left(x\right)}\) là hàm lồi trên \(\left(0,\pi\right)\)

Do đó theo BĐT Jensen ( trường hợp của Karamata) có:

\(f\left(A\right)+f\left(B\right)+f\left(c\right)\ge3f\left(\dfrac{A+B+C}{3}\right)=3f\left(\dfrac{\pi}{3}\right)=2\sqrt{3}+\dfrac{3}{2}\)

P/s:Tính độ "lầy" của hàm số:

\(f''(x)=-\cos(x)-\frac{1}{\sin(x)}+\frac{2}{(\sin(x))^3}\)

Và cho \(x\in (0,\pi);f''(x)>0\) nếu \(2>(\sin(x))^2(\sin(x)\cos(x)+1)\) là xài dc Jensen :D

9 tháng 8 2018

ta có : \(A=\dfrac{sin^2\alpha-cos^2\alpha}{sin\alpha.cos\alpha}=\dfrac{\dfrac{sin^2\alpha}{cos^2\alpha}-\dfrac{cos^2\alpha}{cos^2\alpha}}{\dfrac{sin\alpha.cos\alpha}{cos^2\alpha}}\) \(=\dfrac{tan^2\alpha-1}{tan\alpha}\)

\(\Leftrightarrow A=\dfrac{\left(\sqrt{3}\right)^2-1}{\sqrt{2}}=\sqrt{2}\) vậy \(A=\sqrt{2}\)

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán