Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)
\(=\dfrac{x^3-y^3-z^3}{125-64-8}\left(1\right)\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
Vì \(x^3-y^3=z^3\)
\(\Rightarrow x^3-y^3-z^3=0\left(2\right)\)
Thay (2) vào (1) ta được
\(\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{53}=0\)
Với \(\dfrac{x^3}{125}=0\)
\(\Rightarrow x^3=0\)
\(\Rightarrow x=0\)
Với \(\dfrac{y^3}{64}=0\)
\(\Rightarrow y^3=0\)
\(\Rightarrow y=0\)
Với \(\dfrac{z^3}{8}=0\)
\(\Rightarrow z^3=0\)
\(\Rightarrow z=0\)
Vậy x = y = z = 0
Ta có: \(x^3-y^3=z^3\Rightarrow x^3-y^3-z^3=0\)
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)
Áp dụng t/c dãy TSBN ta được:
\(\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{125-64-8}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=0\\\dfrac{y}{4}=0\\\dfrac{z}{2}=0\end{matrix}\right.\Rightarrow x=y=z=0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow x^2=4.9=36\Rightarrow x=\sqrt{36}=6\\ y^2=4.16=64\Rightarrow y=\sqrt{64}=8\)
$x^2=36$ thì $x=\pm 6$ bạn nhé. Kết quả của bạn chưa đủ.
Bài toán có đáp số $(x,y)=(\pm 6, \pm 8)$
Ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}\Rightarrow y=\dfrac{4}{3}.\dfrac{2x}{3}=\dfrac{8x}{9}\)
\(\dfrac{2x}{3}=\dfrac{4z}{5}\Rightarrow z=\dfrac{5}{4}.\dfrac{2x}{3}=\dfrac{10x}{12}=\dfrac{5x}{6}\)
\(\Rightarrow x+y+z=x+\dfrac{8x}{9}+\dfrac{5x}{6}=49\)
Hay \(\left(18+16+15\right).\dfrac{x}{18}=49\).
tức là $x = 18 $
\(\Rightarrow y=16\)
và \(z=15\)
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)
\(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)
\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)
⇒\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)
⇒x=70;y=105;z=84
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17
\(\dfrac{x}{5}=\dfrac{y}{3}\)
\(\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2\)
\(\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{25}=\dfrac{y^2}{9}\)
\(=\dfrac{x^2-y^2}{25-9}\)
\(=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}.5=\dfrac{5}{4}\\y=\dfrac{1}{4}.3=\dfrac{3}{4}\end{matrix}\right.\)
Ta có \(\dfrac{x}{5}=\dfrac{y}{3}\) và \(x^2-y^2=4\)
\(\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\) và \(x^2-y^2=4\)
Áp dụng t/c dãy tỉ số b/nhau,ta có:
\(\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}=0.25\)
Với \(\dfrac{x^2}{25}=0,25\Rightarrow\dfrac{x}{5}=0,25\Rightarrow x=1,25\)
\(\dfrac{y^2}{9}=0,25\Rightarrow\dfrac{y}{3}=0,25\Rightarrow y=0,75\)