K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`x/5 = y/(-3)` và `x^2 + y^2 = 34?`

Đặt `x/5 = y/(-3) = k`

`=> x = 5k; y = -3k`

`x^2 + y^2 = 34`

`=> (5k)^2 + (-3k)^2 = 34`

`=> 25k^2 + 9k^2 = 34`

`=> (25+9)k^2 = 34`

`=>34k^2 = 34`

`=> k^2 = 1`

`=> k \in {-1; 1}`

Khi `k = 1`

`=> x = 5; y = -3`

Khi `k = -1`

`=> x = -5; y = 3`

Vậy, `x; y \in {-3; 5}; {-5; 3}.`

Sửa đề: x^2+y^2=34

Đặt x/5=y/-3=k

=>x=5k; y=-3x

x^2+y^2=34

=>25k^2+9k^2=34

=>k^2=1

TH1: k=1

=>x=5; y=-3

TH2: k=-1

=>x=-5; y=3

22 tháng 10 2021

\(\dfrac{x}{5}=\dfrac{4}{-3}\)

\(-3.x=4.5\)

\(-3x=20\)

\(x=-\dfrac{20}{3}\)

22 tháng 10 2021

b: Đặt \(\dfrac{x}{4}=\dfrac{y}{7}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=7k\end{matrix}\right.\)

Ta có: \(x^2-y^2=-33\)

\(\Leftrightarrow k^2=1\)

Trường hợp 1: k=1

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=4\\y=7k=7\end{matrix}\right.\)

Trường hợp 2: k=-1

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-4\\y=7k=-7\end{matrix}\right.\)

17 tháng 9 2021

1) \(x:y:z=2:3:4\) ⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

⇒ x=4;y=6;z=8

17 tháng 9 2021

\(1,\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot4=8\end{matrix}\right.\)

\(2,\) Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{3y}{-9}=\dfrac{2z}{8}=\dfrac{4x-3y-2z}{8-\left(-9\right)-8}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot\left(-3\right)=-6\\z=2\cdot4=8\end{matrix}\right.\)

\(3,4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8};\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x+y+z}{9+6+8}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot6=12\\z=2\cdot8=16\end{matrix}\right.\)

\(4,5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{9}=\dfrac{y}{15};\dfrac{y}{z}=\dfrac{3}{2}\Rightarrow\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x}{18}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{18+45-40}=\dfrac{34}{23}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{34}{23}\cdot9=\dfrac{306}{23}\\y=\dfrac{34}{23}\cdot15=\dfrac{510}{23}\\z=\dfrac{34}{23}\cdot10=\dfrac{340}{23}\end{matrix}\right.\)

20 tháng 8 2021

1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)

\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)

NV
4 tháng 8 2021

a.

Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)

Thế vào \(2x+y-z=81\)

\(\Rightarrow2.5k+3k-4k=81\)

\(\Rightarrow9k=81\)

\(\Rightarrow k=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)

b.

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)

Thế vào \(5x-y+3z=124\)

\(\Rightarrow5.3k-5k+3.2k=124\)

\(\Rightarrow16k=124\)

\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)

NV
4 tháng 8 2021

c.

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Thế vào \(xyz=810\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)

3 tháng 9 2021

a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)

               \(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)

b)Ta có:  \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

               \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)

Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)

 

 

23 tháng 8 2021

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :

`(x)/(3)=(y)/(4)=(x+y)/(3+4)=(90)/(7)`

`->` $\begin{cases}x=\dfrac{90}{7}.3=\dfrac{30}{7} \\ y=\dfrac{90}{7}.4=\dfrac{360}{7} \end{cases}$

     

1)\(\dfrac{x}{5}=\dfrac{y}{3}\)        áp dụng...ta đc:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{20}{2}=10\)

x=50

y=30

a: Áp dụng tính chất của DTSBN, ta được:

x/5=y/2=(x-y)/(5-2)=9/3=3

=>x=15; y=6

b: =>(x-3)/12=3/(x-3)

=>(x-3)^2=36

=>(x-9)(x+3)=0

=>x=9 hoặc x=-3

c; x/2=y/3

=>x/10=y/15

y/5=z/4

=>y/15=z/12

=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17

=>x=490/17; y=735/17; z=588/17

12 tháng 12 2021

\(\dfrac{x}{y}=\dfrac{7}{10}=>\dfrac{x}{7}=\dfrac{y}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x+y}{7+10}=\dfrac{34}{17}=2\)

=>x=2.7=14

=>y=2.10=20

12 tháng 12 2021

\(\dfrac{x}{y}=\dfrac{7}{10}\) 

\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{10}\) và \(x+y=34\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x+y}{7+10}=\dfrac{34}{17}=2\)

\(\Rightarrow\dfrac{x}{7}=2\rightarrow x=7.2=14\)

     \(\dfrac{y}{10}=2\rightarrow y=10.2=20\)

Vậy \(x=14;y=20\)

Chúc bạn học tốt <3