Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
a) Theo bài ra ta có : \(x+y+z=49\)
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\\ =\dfrac{12x+12y+12z}{18+16+15}\\ =\dfrac{12\left(x+y+z\right)}{49}\\ =\dfrac{12\cdot49}{49}\\ =12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\Rightarrow12x=216\Rightarrow x=18\\\dfrac{12y}{16}=12\Rightarrow12y=192\Rightarrow y=16\\\dfrac{12z}{15}=12\Rightarrow12z=180\Rightarrow z=15\end{matrix}\right.\)
\(\text{Vậy }x=18\\ y=16\\ z=15\)
b) Theo bài ra ta có : \(2x+3y-z=50\)
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2\left(x-1\right)}{4}=\dfrac{3\left(y-2\right)}{9}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{2x-2}{4}=\dfrac{3y-2}{9}=\dfrac{z-3}{4}=\\ \dfrac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\\ =\dfrac{2x-2+3y-6-z+3}{9}\\ =\dfrac{\left(2x+3y-z\right)-\left(2+6-3\right)}{9}\\ =\dfrac{50-5}{9}\\ =\dfrac{45}{9}\\ =5\\ \)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x-2}{4}=5\Rightarrow2x-2=20\Rightarrow2x=22\Rightarrow x=11\\\dfrac{3y-6}{9}=5\Rightarrow3y-6=45\Rightarrow3y=51\Rightarrow y=17\\\dfrac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\end{matrix}\right.\)
\(\text{Vậy }x=11\\ y=17\\ z=23\)
a: \(\dfrac{2x-y}{3x+2y}=\dfrac{5}{2}\)
\(\Leftrightarrow15x+10y=4x-2y\)
=>11x=-12y
=>\(\dfrac{x}{-12}=\dfrac{y}{11}\)
Đặt \(\dfrac{x}{-12}=\dfrac{y}{11}=k\)
=>x=-12k; y=11k
\(P=\dfrac{5x+4y}{25x-y}=\dfrac{5\cdot\left(-12k\right)+4\cdot11k}{25\cdot\left(-12k\right)-11k}=\dfrac{16}{311}\)
b: \(\dfrac{x-5y}{x-3y}=\dfrac{4}{3}\)
=>4x-12y=3x-15y
=>x=-3y
\(\Leftrightarrow\dfrac{x}{-3}=\dfrac{y}{1}=k\)
=>x=-3k; y=k
\(P=\dfrac{x^3+2y^3}{x^3-y^3}=\dfrac{-27k^3+2k^3}{-27k^3-k^3}=\dfrac{-25}{-28}=\dfrac{25}{28}\)
1. Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)
+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)
+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)
+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)
Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)
2,Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)
+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)
+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)
+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)
Vậy \(x=-2;y=-3;c=-4\)
a: \(\Leftrightarrow x^3=-216\)
=>x=-6
b: \(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
=>x=8; y=10; z=7
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}\) = \(\dfrac{y}{4}\) = \(\dfrac{z}{3}\) = \(\dfrac{x+2y+3z}{5+8+9}\) = \(\dfrac{x+2y+3z}{22}\)
\(\dfrac{x}{5}\)= \(\dfrac{y}{4}\) = \(\dfrac{z}{3}\) = \(\dfrac{x-2y+3z}{5-8+9}\) = \(\dfrac{x-2y+3z}{6}\)
=> \(\dfrac{x+2y+3z}{22}\) = \(\dfrac{x-2y+3z}{6}\)
=> \(\dfrac{x+2y+3z}{x-2y+3z}\) = \(\dfrac{22}{6}\) =\(\dfrac{11}{3}\)
Câu 2:
\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)
\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)
\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)
=>-2001x+2000y=2001x-2000y
=>-4002x=-4000y
=>2001x=2000y
hay x/y=2000/2001
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\)\(\dfrac{x}{3}=\dfrac{2y}{8}\)\(\Rightarrow\dfrac{x+2y}{3+8}=\dfrac{66}{11}=6\)
\(\dfrac{x}{3}=6\Rightarrow x=18\)
\(\dfrac{y}{4}=6\Rightarrow y=24\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/3=y/4=(x+2y)/(3+2.4)=66/11=6`
`=>x=6.3=18`
`y=6.4=24`.