Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)\(=\dfrac{5x+2y+z}{555+444+333}=\dfrac{1100}{1332}=\dfrac{275}{333}\)
Từ đó tìm được x;y;z
b) Từ \(\dfrac{x}{2}=\dfrac{y}{3}\) \(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)
Đặt \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4k\\y^2=9k\end{matrix}\right.\)
\(\Rightarrow x^2\cdot y^2=4k\cdot9k=52\)
\(\Rightarrow36k^2=52\)
\(\Rightarrow k^2=\dfrac{13}{9}\) (sai đề)
b: Sửa đề: x^2+y^2=52
Đặt x/2=y/3=k
=>x=2k; y=3k
x^2+y^2=52
=>4k^2+9k^2=52
=>k^2=4
TH1: k=2
=>x=4; y=6
TH2: k=-2
=>x=-4; y=-6
c: Đặt x/5=y/3=k
=>x=5k; y=3k
x^2-y^2=16
=>25k^2-9k^2=16
=>k^2=1
TH1: k=1
=>x=5; y=3
TH2: k=-1
=>x=-5; y=-3
d: Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: xy=54
=>2k*3k=54
=>6k^2=54
=>k^2=9
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
e: Đặt x/4=y/3=k
=>x=4k; y=3k
Ta có: xy=12
=>4k*3k=12
=>k^2=1
TH1: k=1
=>x=4; y=3
TH2: k=-1
=>x=-4; y=-3
1) \(\dfrac{x}{3}=\dfrac{y}{4}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
\(\Rightarrow xy=12k^2=192\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm12\\y=\pm16\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\end{matrix}\right.\)
2) Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-90}{9}=-10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-10\right).2=-20\\y=\left(-10\right).3=-30\\z=\left(-10\right).5=-50\end{matrix}\right.\)
3) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.8=16\\z=2.5=10\end{matrix}\right.\)
❏Ta có : \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{2}\\xy=54\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\xy=54\end{matrix}\right.\)
\(\Rightarrow x^2=54\Rightarrow x=y=\sqrt{54}=3\sqrt{6}\)
Ta có : \(\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{2}\\xy=54\end{matrix}\right.=>\left\{{}\begin{matrix}x=y\\xy=54\end{matrix}\right.\)
⇒\(x^2=54\)=>x=y=\(\sqrt{54=3\sqrt{6}}\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :
`(x)/(3)=(y)/(4)=(x+y)/(3+4)=(90)/(7)`
`->` $\begin{cases}x=\dfrac{90}{7}.3=\dfrac{30}{7} \\ y=\dfrac{90}{7}.4=\dfrac{360}{7} \end{cases}$
1)\(\dfrac{x}{5}=\dfrac{y}{3}\) áp dụng...ta đc:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{20}{2}=10\)
x=50
y=30
Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{40}=k\Leftrightarrow x=15k;y=20k;z=40k\)
\(xy=1200\\ \Leftrightarrow300k^2=1200\\ \Leftrightarrow k^2=4\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30;y=40;z=80\\x=-30;y=-40;z=-80\end{matrix}\right.\)
\(\dfrac{x}{3}=\dfrac{y}{7}\Rightarrow\)\(\dfrac{x}{3}\times\dfrac{y}{7}=\dfrac{xy}{21}=\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{7}\right)^2\)
\(\dfrac{xy}{21}=\dfrac{84}{21}=4\)
\(\Rightarrow\left(\dfrac{x}{3}\right)^2=4\Rightarrow\)\(\dfrac{x}{3}=2\Rightarrow x=6\)
\(\Rightarrow\left(\dfrac{y}{7}\right)^2=4\Rightarrow\)\(\dfrac{y}{7}=2\Rightarrow y=14\)
Đặt: \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(\Rightarrow xy=2k\cdot3k=6k^2=54\Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
+) Với k = 3 ta có: \(\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=9\end{matrix}\right.\)
+) Với k = -3 ta có: \(\left\{{}\begin{matrix}x=2k=2\cdot\left(-3\right)=-6\\y=3k=3\cdot\left(-3\right)=-9\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;9\right);\left(-6;-9\right)\)
\(\dfrac{x}{2}=\dfrac{y}{3}\&xy=54\)
Áp dụng tc dãy tỉ số BN ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{xy}{2.3}=\dfrac{54}{6}=9\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=9\\\dfrac{y}{3}=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=27\end{matrix}\right.\)