Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau ta có;
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{25}=\dfrac{100}{25}=4\)
Do \(\dfrac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\dfrac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
Vậy...
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\\\dfrac{y^2}{16}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}\&x^2+y^2=100\)
Áp dụng tc dãy tỉ số bằng nhau ta được:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\\\dfrac{y^2}{16}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
Do đó: \(x^2=36;y^2=64\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{6;-6\right\}\\y\in\left\{8;-8\right\}\end{matrix}\right.\)
\(\dfrac{x}{5}=\dfrac{y}{3}\)
\(\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2\)
\(\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{25}=\dfrac{y^2}{9}\)
\(=\dfrac{x^2-y^2}{25-9}\)
\(=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}.5=\dfrac{5}{4}\\y=\dfrac{1}{4}.3=\dfrac{3}{4}\end{matrix}\right.\)
Ta có \(\dfrac{x}{5}=\dfrac{y}{3}\) và \(x^2-y^2=4\)
\(\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\) và \(x^2-y^2=4\)
Áp dụng t/c dãy tỉ số b/nhau,ta có:
\(\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}=0.25\)
Với \(\dfrac{x^2}{25}=0,25\Rightarrow\dfrac{x}{5}=0,25\Rightarrow x=1,25\)
\(\dfrac{y^2}{9}=0,25\Rightarrow\dfrac{y}{3}=0,25\Rightarrow y=0,75\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=13.2=26\end{matrix}\right.\)
Vật \(x=14;y=26\)
b) (Chỗ này bạn viết nhầm thì phải)
Ta có:
\(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
và \(x-y=-16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)
Vậy \(x=12;y=28\)
c) Ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}\)
và \(2x-y=34\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}2x=38.2=76\Rightarrow x=38\\y=21.2=42\end{matrix}\right.\)
Vậy \(x=38;y=42\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=9.4=36=6^2=\left(-6\right)^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\y^2=16.4=64=8^2=\left(-8\right)^2\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x:y\right)\in\left\{\left(6;8\right);\left(6;-8\right);\left(-6;8\right);\left(-6;-8\right)\right\}\)
Cả 4 cái có 1 câu huyền thoại:"Áp dụng tính chất dãy tỉ số = nhau ta có" nên mk nói cho cả 4 lun :v
a) \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
c) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
c) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.9=36\Rightarrow x=\pm6\\y^2=4.16=64\Rightarrow y=\pm8\end{matrix}\right.\)
\(\)
Ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)
\(=\dfrac{x^3-y^3-z^3}{125-64-8}\left(1\right)\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
Vì \(x^3-y^3=z^3\)
\(\Rightarrow x^3-y^3-z^3=0\left(2\right)\)
Thay (2) vào (1) ta được
\(\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{53}=0\)
Với \(\dfrac{x^3}{125}=0\)
\(\Rightarrow x^3=0\)
\(\Rightarrow x=0\)
Với \(\dfrac{y^3}{64}=0\)
\(\Rightarrow y^3=0\)
\(\Rightarrow y=0\)
Với \(\dfrac{z^3}{8}=0\)
\(\Rightarrow z^3=0\)
\(\Rightarrow z=0\)
Vậy x = y = z = 0
Ta có: \(x^3-y^3=z^3\Rightarrow x^3-y^3-z^3=0\)
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)
Áp dụng t/c dãy TSBN ta được:
\(\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{125-64-8}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=0\\\dfrac{y}{4}=0\\\dfrac{z}{2}=0\end{matrix}\right.\Rightarrow x=y=z=0\)
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
Cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}và\dfrac{9-x}{7}+\dfrac{11-x}{9}=2\).Tìm x+y+z
theo bài ra ta có:
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{x+16+y-25+z+9}{9+16+25}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{x+16}{9}=\dfrac{x+y+z}{50}\left(1\right)\)ta lại có:
\(\dfrac{9-x}{7}+\dfrac{11-x}{9}=2\\ \Rightarrow\dfrac{7+2-x}{7}+\dfrac{9+2-x}{9}=2\\ \Rightarrow\left(1+\dfrac{2-x}{7}\right)+\left(1+\dfrac{2-x}{9}\right)=2\\ \Rightarrow\left(1+1\right)+\left(\dfrac{2-x}{7}+\dfrac{2-x}{9}\right)=2\\ \Rightarrow2+\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=2\\ \Rightarrow\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=0\\ \Rightarrow2-x=0\\ \Rightarrow x=2\)
thay x = 2 vào 1 ta có:
\(\Rightarrow\dfrac{2+16}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{18}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow2=\dfrac{x+y+z}{50}\\ \Rightarrow x+y+z=2.50\\ \Rightarrow x+y+z=100\)
vậy x + y + z = 100
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow x^2=4.9=36\Rightarrow x=\sqrt{36}=6\\ y^2=4.16=64\Rightarrow y=\sqrt{64}=8\)
$x^2=36$ thì $x=\pm 6$ bạn nhé. Kết quả của bạn chưa đủ.
Bài toán có đáp số $(x,y)=(\pm 6, \pm 8)$