K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}\&x^2+y^2=100\)

Áp dụng tc dãy tỉ số bằng nhau ta được:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\\\dfrac{y^2}{16}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

Do đó: \(x^2=36;y^2=64\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{6;-6\right\}\\y\in\left\{8;-8\right\}\end{matrix}\right.\)

3 tháng 1 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Rightarrow x^2=4.9=36\Rightarrow x=\sqrt{36}=6\\ y^2=4.16=64\Rightarrow y=\sqrt{64}=8\)

AH
Akai Haruma
Giáo viên
3 tháng 1 2021

$x^2=36$ thì $x=\pm 6$ bạn nhé. Kết quả của bạn chưa đủ. 

Bài toán có đáp số $(x,y)=(\pm 6, \pm 8)$

5 tháng 11 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có;

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{25}=\dfrac{100}{25}=4\)

Do \(\dfrac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)

\(\dfrac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)

Vậy...

5 tháng 11 2017

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\\\dfrac{y^2}{16}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)

Vậy ..

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

a. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$

$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$

b. Áp dụng tính chất dãy tỉ số bằng nhau:

$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$

$\Rightarrow x=(-84):7=-12; y=-84:3=-28$

 

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$

$\Rightarrow x=2.5=10; y=9.2=18$

d. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$

$\Rightarrow x=16.15=240; y=7.16=112$

e.

Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$

Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$

Với $k=10$ thì $x=5k=50; y=2k=20$

Với $k=-10$ thì $x=5k=-50; y=2k=-20$

 

7 tháng 8 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=13.2=26\end{matrix}\right.\)

Vật \(x=14;y=26\)

b) (Chỗ này bạn viết nhầm thì phải)

Ta có:

\(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

\(x-y=-16\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)

Vậy \(x=12;y=28\)

c) Ta có:

\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}\)

\(2x-y=34\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}2x=38.2=76\Rightarrow x=38\\y=21.2=42\end{matrix}\right.\)

Vậy \(x=38;y=42\)

d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=9.4=36=6^2=\left(-6\right)^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\y^2=16.4=64=8^2=\left(-8\right)^2\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x:y\right)\in\left\{\left(6;8\right);\left(6;-8\right);\left(-6;8\right);\left(-6;-8\right)\right\}\)

7 tháng 8 2017

Cả 4 cái có 1 câu huyền thoại:"Áp dụng tính chất dãy tỉ số = nhau ta có" nên mk nói cho cả 4 lun :v

a) \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)

b) \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)

c) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)

c) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.9=36\Rightarrow x=\pm6\\y^2=4.16=64\Rightarrow y=\pm8\end{matrix}\right.\)

\(\)

9 tháng 4 2017

theo bài ra ta có:

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{x+16+y-25+z+9}{9+16+25}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{x+16}{9}=\dfrac{x+y+z}{50}\left(1\right)\)ta lại có:

\(\dfrac{9-x}{7}+\dfrac{11-x}{9}=2\\ \Rightarrow\dfrac{7+2-x}{7}+\dfrac{9+2-x}{9}=2\\ \Rightarrow\left(1+\dfrac{2-x}{7}\right)+\left(1+\dfrac{2-x}{9}\right)=2\\ \Rightarrow\left(1+1\right)+\left(\dfrac{2-x}{7}+\dfrac{2-x}{9}\right)=2\\ \Rightarrow2+\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=2\\ \Rightarrow\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=0\\ \Rightarrow2-x=0\\ \Rightarrow x=2\)

thay x = 2 vào 1 ta có:

\(\Rightarrow\dfrac{2+16}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{18}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow2=\dfrac{x+y+z}{50}\\ \Rightarrow x+y+z=2.50\\ \Rightarrow x+y+z=100\)

vậy x + y + z = 100

1 tháng 10 2017

Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=2k\end{matrix}\right.\) (1)

Thay (1) vào \(x^2+y^2=100\)

\(\Rightarrow\)\(x^2+y^2=100\)\(=\left(3k\right)^2+\left(4k\right)^2\)

\(=9k^2+16k^2\)

\(=25k^2=100\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm8\\z=\pm4\end{matrix}\right.\)

Xét \(\dfrac{x}{7}=\dfrac{4}{y}=\dfrac{z}{2}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=7k\\y=4k\\z=2k\end{matrix}\right.\) (2)

Thay (2) vào \(x-3x=-2x=9=-2.7k=9\)

\(\Rightarrow k=\dfrac{-9}{14}\)

\(\Rightarrow\left\{{}\begin{matrix}x=7k=7.\dfrac{-9}{14}=\dfrac{-9}{2}\\y=4k=4.\dfrac{-9}{14}=\dfrac{-18}{7}\\z=2k=2.\dfrac{-9}{14}=\dfrac{-9}{7}\end{matrix}\right.\)

1 tháng 10 2017

a) Ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}=\dfrac{x^2+y^2}{3^2+4^2}=\dfrac{100}{25}=4\)

\(\dfrac{x^2}{3^2}=4\Rightarrow x=6\)

\(\dfrac{y^2}{4^2}=4\Rightarrow y=8\)

\(\dfrac{z}{2}=\dfrac{x}{3}=\dfrac{6}{3}\Rightarrow z=4\)

Vậy ...

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)