K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

ĐK: x\(\ne\){-3;0;3}.

\(\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{3x^2}=\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{3x^2}=\dfrac{1}{3x}\).

4 tháng 1 2022

\(\left(\dfrac{5x-x-12}{x\left(x+3\right)}\right):\dfrac{x-3}{x+3}=\dfrac{4\left(x-3\right)}{x\left(x+3\right)}.\dfrac{x+3}{x-3}=\dfrac{4}{x}\)

19 tháng 12 2021

c: \(=\dfrac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}=\dfrac{3x}{x^2+1}\)

20 tháng 12 2021

cho mik xin nốt mấy câu còn lại đi bạn

 

7 tháng 6 2023

` @ \color{Red}{m}`

` \color{lightblue}{Answer}`  

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x}{x+1}\)

__

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\\ =\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2x-6}{2x\left(x+3\right)}\\ =\dfrac{3x-\left(2x-6\right)}{2x\left(x+3\right)}\\ =\dfrac{3x-2x+6}{2x\left(x+3\right)}\\ =\dfrac{x+6}{2x\left(x+3\right)}\)

__

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\\ =\dfrac{1}{1-x}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{1-x}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x-2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1}{1+x}\)

7 tháng 6 2023

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\left(dkxd:x\ne\pm1\right)\)

\(=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x}{x+1}\)

========================

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\left(dkxd:x\ne\pm3;x\ne0\right)\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)

\(=\dfrac{3x-2\left(x-3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x+6}{2x^2+6x}\)

==========================

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\left(dkxd:x\ne\pm1\right)\)

\(=-\dfrac{1}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-\left(x+1\right)+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x-1+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x+1}\)

ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)

a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)

\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)

\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)

\(=\dfrac{3x}{x-2}\)

b) Để A nguyên thì \(3x⋮x-2\)

\(\Leftrightarrow3x-6+6⋮x-2\)

mà \(3x-6⋮x-2\)

nên \(6⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(6\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)

5 tháng 2 2023

\(\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

\(=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x\left(x-3\right)}\right):\dfrac{2x-2}{x}\)

\(=\left(\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}-\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9}{x\left(x-3\right)}\right)\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ =\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6}{x}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-3}{x-1}\)

5 tháng 2 2023

\(ĐK:x\ne0,x\ne3\)