\(\dfrac{x+1}{1998}\)+ \(\dfrac{x+2}{1997}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)

\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)

\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)

\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\ne0\) nên \(x+100=0\Leftrightarrow x=-100\)

b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)

\(\Rightarrow\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1=\dfrac{x+3}{1996}+1+\dfrac{x+4}{1995}+1\)

\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}=\dfrac{x+1999}{1996}+\dfrac{x+1999}{1995}\)

\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)

\(\Rightarrow\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)

\(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\ne0\) nên \(x+1999=0\Leftrightarrow x=-1999\)

c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Rightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Rightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Rightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\ne0\) nên \(300-x=0\Leftrightarrow x=300\)

14 tháng 12 2017

Vào trang cá nhân của t mà xem.T vừa làm r.Lười gõ lại lắm T^T

14 tháng 12 2017

\(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)

\(=\dfrac{x+1}{1998}+\dfrac{x+2}{1997}-\dfrac{x+3}{1996}-\dfrac{x+4}{1995}=0\)

\(=\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1-\dfrac{x+3}{1996}-1-\dfrac{x+4}{1995}-1=0\)

\(=\dfrac{x+1999}{1998}+\dfrac{x+1999}{1998}-\left(\dfrac{x+3}{1996}+1\right)-\left(\dfrac{x+4}{1995}+1\right)=0\)

\(=\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)

\(=\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)

\(x+1999=0\)

Vậy \(x=-1999\)

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)

b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)

\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)

19 tháng 1 2019

\(a.\dfrac{x-2}{2000}+\dfrac{x-3}{1999}=\dfrac{x-4}{1998}+\dfrac{x-5}{1997}\\ \Leftrightarrow\dfrac{x-2}{2000}-1+\dfrac{x-3}{1999}-1=\dfrac{x-4}{1998}-1+\dfrac{x-5}{1997}-1\\ \Leftrightarrow\dfrac{x-2}{2000}-\dfrac{2000}{2000}+\dfrac{x-3}{1999}-\dfrac{1999}{1999}=\dfrac{x-4}{1998}-\dfrac{1998}{1998}+\dfrac{x-5}{1997}-\dfrac{1997}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}=\dfrac{x-2002}{1998}+\dfrac{x-2002}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}-\dfrac{x-2002}{1998}-\dfrac{x-2002}{1997}=0\\ \Leftrightarrow\left(x-2002\right)\left(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\right)=0\\ \)

\(Do:\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\ne0\\ \Rightarrow x-2002=0\\ \Leftrightarrow x=2002\\ Vậy:S=\left\{2002\right\}\)

Mấy câu khác tương tự :v

b: \(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)

=>123-x=0

=>x=123

c: \(\Leftrightarrow\dfrac{x-2}{2017}+1=\dfrac{x-1}{2018}+\dfrac{x}{2019}\)

\(\Leftrightarrow\left(\dfrac{x-2}{2017}-1\right)=\left(\dfrac{x-1}{2018}-1\right)+\left(\dfrac{x}{2019}-1\right)\)

=>x-2019=0

=>x=2019

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

1 tháng 12 2017

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)

\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

5 tháng 1 2018

Phương trình đưa được về dạng ax + b = 0Phương trình đưa được về dạng ax + b = 0

9 tháng 1 2019

Câu a bạn có thể làm cho mình được ko. Mk đang cần nó

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks