\(\dfrac{x}{0,3}=\dfrac{y}{0,2}=2z\)và z-3x=1

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

Áp dụng tính chất của dãy tỉ số bằng nhau:

`x/(0,3)=y/(0,2)=(2z)/1=(z-3x)/(1/2 - 3.0,3) = 1/(-0,4)=-5/2`

`=>x=-5/2 . 0,3 =-3/4`

`y=-5/2 .0,2=-1/2`

`z= -5/2 : 2 =-5/4`

24 tháng 8 2018

1/

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x-y}{5-6}=\dfrac{36}{-1}=-36\)

\(\Rightarrow\left\{{}\begin{matrix}x=-36\cdot5=-180\\y=-36\cdot6=-216\\z=-36\cdot4=-144\end{matrix}\right.\)

2/

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{y+z}{3+4}=\dfrac{28}{7}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot3=12\\z=4\cdot4=16\end{matrix}\right.\)

3/

\(\dfrac{x}{1,2}=\dfrac{y}{1,3}\Leftrightarrow\dfrac{2x}{2,4}=\dfrac{y}{1,3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{2,4}=\dfrac{y}{1,3}=\dfrac{2x-y}{2,4-1,3}=\dfrac{5,5}{1,1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5\cdot2,4}{2}=6\\y=5\cdot1,3=6,5\\z=5\cdot1,4=7\end{matrix}\right.\)

4/

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{x-y}{0,5-0,3}=\dfrac{1}{0,2}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot0,5=2,5\\y=5\cdot0,3=1,5\\z=5\cdot0,2=1\end{matrix}\right.\)

5/

\(z=\dfrac{x}{0,3}\Leftrightarrow z=\dfrac{3x}{0,9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(z=\dfrac{3x}{0,9}=\dfrac{z-3x}{1-0,9}=\dfrac{1}{0,1}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot0,9}{3}=3\\y=10\cdot0,7=7\\z=10\end{matrix}\right.\)

26 tháng 8 2018

cảm ơn bạn nha :>

31 tháng 8 2021

\(\dfrac{x}{0,3}=\dfrac{y}{0,2}=2z=\dfrac{3x}{0,9}=\dfrac{z}{\dfrac{1}{2}}=\dfrac{z-3x}{\dfrac{1}{2}-0,9}=\dfrac{1}{-\dfrac{2}{5}}=-\dfrac{5}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{5.0,3}{2}=-\dfrac{3}{4}\\y=-\dfrac{5.0,2}{2}=-\dfrac{1}{2}\\z=-\dfrac{5}{2.2}=-\dfrac{5}{4}\end{matrix}\right.\)

Ta có: \(\dfrac{x}{0.3}=\dfrac{y}{0.2}=\dfrac{2z}{1}\)

nên \(\dfrac{3x}{0.9}=\dfrac{y}{0.2}=\dfrac{z}{0.5}\)

mà z-3x=1

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Δ\(\dfrac{3x}{0.9}=\dfrac{y}{0.2}=\dfrac{z}{0.5}=\dfrac{z-3x}{0.5-0.9}=\dfrac{1}{0.4}=\dfrac{5}{2}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\cdot\dfrac{3}{10}=\dfrac{3}{4}\\y=\dfrac{5}{2}\cdot\dfrac{1}{5}=\dfrac{1}{2}\\z=\dfrac{5}{2}:2=\dfrac{5}{4}\end{matrix}\right.\)

23 tháng 8 2017

\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\)

\(\Leftrightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{x+y+z}{\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-196}{\dfrac{42}{18}}=\dfrac{-98}{\dfrac{21}{18}}=\dfrac{-588}{7}\)

(thấy lẻ,nếu đề ko sai thì làm tiếp)

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y-z}{2+3-4}=\dfrac{-10}{1}=-10\)

\(\Rightarrow\left\{{}\begin{matrix}x=-10.2=-20\\y=-10.3=-30\\z=-10.4=-40\end{matrix}\right.\)

Vậy......

23 tháng 8 2017

tks nha bn

7 tháng 8 2017

Giải

Ta có:

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)\(=\dfrac{12x-8y+6z-12+8y-6z}{16+9+4}\)\(=\)\(\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-2y=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\2z-4x=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\\z=2.4=8\end{matrix}\right.\)

Vậy \(x=4;y=6;z=8\)

Bạn học tốt!

7 tháng 8 2017

Tks bn

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

3 tháng 4 2020

Ta có 3x-2y/5=2z-5x/3=5y-3z/2

=> 3xz-2yz/5z=2zy-5xy/3y=5yx-3zx/2x

=\(\frac{3yz-2xz+2zx-5yx+5xy-3zy}{5z+3x+2y}\) =0

=>3x-2y/5=0=>3x=2y=>x/2=y/3 (1)

2z-5x/3=0=>2z=5x=>z/5=x/2 (2)

Từ (1) và (2) => x/2=y/3=z/5

(bạn tự lm tiếp nhé!)

27 tháng 12 2017

Giải:

Ta có:

\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}.\)

\(\Rightarrow\dfrac{3\left(2x-4y\right)}{3^2}=\dfrac{2\left(4z-3x\right)}{2^2}=\dfrac{4\left(3y-2z\right)}{4^2}.\)

\(\Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}.\)

\(=\dfrac{6x-12y+8z-6x+12y-8z}{9+4+16}.\)

\(=\dfrac{\left(6x-6x\right)+\left(8z-8z\right)+\left(12y-12y\right)}{19}=0.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}.\\4z=3x\Rightarrow\dfrac{z}{3}=\dfrac{x}{4}.\\3y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{3}.\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}_{\left(1\right)}\)\(2x-y+z=27_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\), kết hợp tính chất dãy tỉ số bằng nhau có:

\(\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3.\)

Từ đó: \(\left\{{}\begin{matrix}2x=3.8=24\Rightarrow x=12.\\y=3.2=6.\\z=3.3=9.\end{matrix}\right.\)

Vậy.....

27 tháng 12 2017

\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\\ \Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\\ =\dfrac{6x-12y+8z-6x+12y-8z}{9+4+16}=\dfrac{0}{29}=0\\ \Rightarrow2x=4y;4z=3x;3y=2z\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\\ \Rightarrow x=12;y=6;z=9\)