\(\dfrac{x-5}{x^2-1}\)=\(\dfrac{3}{x+1}\). Giải pt trên hộ mì...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

a) ĐK : x,y \(\ne0\)

Đặt \(u=\dfrac{1}{x};v=\dfrac{1}{y}\)

Hệ pt đã cho trở thành :

\(\left\{{}\begin{matrix}u-v=1\\3u+4v=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=1+v\\3\left(1+v\right)+4v=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u=1+\dfrac{2}{7}\\v=\dfrac{2}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{9}{7}\\v=\dfrac{2}{7}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)(TM)

Vậy x=7/9 và y=7/2

29 tháng 1 2021

a) ĐK : x,y 0≠0

Đặt u=1x;v=1yu=1x;v=1y

Hệ pt đã cho trở thành :

{uv=13u+4v=5{u−v=13u+4v=5

{u=1+v3(1+v)+4v=5⇔{u=1+v3(1+v)+4v=5⎪ ⎪⎪ ⎪u=1+27v=27⇔{u=1+27v=27⎪ ⎪⎪ ⎪u=97v=27⇔{u=97v=27 ⎪ ⎪ ⎪

31 tháng 12 2022

c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6

=>5y^2=45 và x^2=13-y^2

=>y^2=9 và x^2=4

=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)

=>x=1 và y=169/4

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)

=>x+1=11/9 và y+4=-11/19

=>x=2/9 và y=-87/19

17 tháng 4 2018

15

\(\dfrac{7}{x-2}\)+\(\dfrac{8}{x-5}\)=3 (x khác 2 khác 5)

\(\Leftrightarrow\)7*(x-5)+8(x-2)=3(x-2)(x-5)

\(\Leftrightarrow\)15x-51=3x^2-21x+30\(\Leftrightarrow\)3x^2-36x+81=0

\(\Leftrightarrow\)\(\begin{matrix}&\end{matrix}\)\(\left[{}\begin{matrix}9\\3\end{matrix}\right.\) tmđk

16\(\dfrac{x^2-3x+6}{x^2-9}\)=\(\dfrac{1}{x-3}\)(x khác +_3)

\(\Leftrightarrow\)x^2-3x+6=x+3

\(\Leftrightarrow\)x^2-4x+3=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}3loại\\1\end{matrix}\right.\)

vậy x=1 là nghiệm của pt

25 tháng 4 2018

17 \(\dfrac{3}{x^2-4}\) = \(\dfrac{1}{x-2}+\dfrac{1}{x+2}\)

<=> x + 2 + x - 2 = 3

<=> 2x = 3

<=> x = \(\dfrac{3}{2}\)

17 tháng 1 2018

hỏi trước tí, bạn biết giải cái hệ này chứ?

\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)

18 tháng 8 2017

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)

\(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)

\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)

\(\Rightarrow m\ge4\) thì pt trên có no

18 tháng 8 2017

cảm ơn bạn.

31 tháng 8 2018

a) điều kiện xác định : \(x\ne\pm1\)

ta có : \(\dfrac{1}{x-1}-\dfrac{2}{x+1}=\dfrac{4}{x^2-1}\Leftrightarrow\dfrac{x+1-2x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x^2-1}\)

\(\Leftrightarrow\dfrac{3-x}{x^2-1}=\dfrac{4}{x^2-1}\Leftrightarrow3-x=4\Leftrightarrow x=-1\) vậy \(x=-1\)

câu này biến đổi xong nó ra luôn pt bật 1 nên o tính \(\Delta\) đc .

b) điều kiện xác định : \(-\sqrt{5}\le x\le\sqrt{5}\)

ta có : \(\sqrt{5-x^2}=x^2+1\Leftrightarrow5-x^2=x^4+2x^2+1\)

\(\Leftrightarrow x^4+3x^2-4=0\)

đặc \(x^2=t\left(t\ge0\right)\) \(\Rightarrow pt\Leftrightarrow t^2+3t-4=0\)

ta có : \(\Delta=3^2-4\left(-4\right)=9+16=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(t_1=\dfrac{-3+\sqrt{25}}{2}=1\) ; \(t_2=\dfrac{-3-\sqrt{25}}{2}=-4\left(loại\right)\)

với \(t=1\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(tmđk\right)\)

vậy \(x=\pm1\)

c) ta có : \(x^3-1=x^2-1\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2=0\end{matrix}\right.\) mấy cái này cũng o tính đen ta đc .

4 tháng 4 2017

a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:

3t2 – 2t – 1 = 0; t1 = 1, t2 =

Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5

x1 = , x2 =

Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:

Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0

Giải ra ta được t1 = 2, t2 = -3.

- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.

- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.

Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.

c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0

Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7

Với t = 7, ta có: √x = 7. Suy ra x = 49.

Vậy phương trình đã cho có một nghiệm: x = 49

d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0

Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0

hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.

- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =

- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =



Bài 2:

a: \(A=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

 \(B=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{x-25}=\dfrac{\sqrt{x}}{\sqrt{x}-5}\)

b: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{\sqrt{x}}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)

\(P-1=\dfrac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{-8}{\sqrt{x}+3}< 0\)

=>P<1