Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
\(\Leftrightarrow\dfrac{x+14}{86}+1+\dfrac{x+15}{85}+1+\dfrac{x+16}{84}+1+\dfrac{x+17}{83}+1+\dfrac{x+116}{4}-4=0\)
\(\Leftrightarrow\dfrac{x+100}{86}+\dfrac{x+100}{85}+\dfrac{x+100}{84}+\dfrac{x+100}{83}+\dfrac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x+100=0\).Do \(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}+\dfrac{1}{4}\ne0\)
\(\Leftrightarrow x=-100\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{\left(x^2+1\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+3\right)}+...+\dfrac{1}{\left(x^2+4\right)\left(x^2+5\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+1}-\dfrac{1}{x^2+2}+\dfrac{1}{x^2+2}-\dfrac{1}{x^2+3}+...+\dfrac{1}{x^2+4}-\dfrac{1}{x^2+5}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+1}-\dfrac{1}{x^2+5}=-1\)\(\Leftrightarrow\dfrac{4}{x^4+6x^2+5}=-1\)
\(\Leftrightarrow\dfrac{x^4+6x^2+9}{x^4+6x^2+5}=0\Leftrightarrow x^4+6x^2+9=0\)
\(\Leftrightarrow\left(x^2+3\right)^2>0\forall x\) (vô nghiệm)
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
Giải phương trình sau:
\(\dfrac{x}{50}\) +\(\dfrac{x_{ }-1}{49}\)+\(\dfrac{x-2}{48}\)+\(\dfrac{x-3}{47}\)+\(\dfrac{x-150}{25}\)= 0
⇔ \(\dfrac{\left(x-50\right)+50}{50}\)+\(\dfrac{\left(x-50\right)+49}{49}\)+\(\dfrac{\left(x-50\right)+48}{48}\)+\(\dfrac{\left(x-50\right)-100}{25}\)= 0
⇔\(\dfrac{x-50}{50}\)+ 1 + \(\dfrac{x-50}{49}\)+1+\(\dfrac{x-50}{48}\)+1+\(\dfrac{x-50}{47}\)+1+\(\dfrac{x-50}{25}\)-4 = 0
⇔\(\dfrac{x-50}{50}\)+\(\dfrac{x-50}{49}\)+\(\dfrac{x-50}{48}\)+\(\dfrac{x-50}{47}\)+\(\dfrac{x-50}{25}\)= 0
⇔ (x - 50 ) ( \(\dfrac{1}{50}\)+ \(\dfrac{1}{49}\)+\(\dfrac{1}{48}\)+\(\dfrac{1}{47}\)+\(\dfrac{1}{25}\)) = 0
⇔ x-50 =\(\dfrac{0}{\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}}\)
⇔ x- 50 = 0
⇔ x = 50
vậy S = \(\left\{50\right\}\)
\(ĐKXĐ:x\ne49;x\ne50\)
Đặt \(x-49=u;x-50=v\)
Phương trình trở thành \(\frac{50}{u}+\frac{49}{v}=\frac{u}{50}+\frac{v}{49}\)
\(\Rightarrow\frac{50v+49u}{uv}=\frac{49u+50v}{2450}\)
\(\Rightarrow\orbr{\begin{cases}50v+49u=0\\uv=2450\end{cases}}\)
+) \(50v+49u=0\)
\(\Rightarrow50v=-49u\)
\(\Rightarrow\frac{v}{-49}=\frac{u}{50}=\frac{\left(x-50\right)-\left(x-49\right)}{-49-50}\)
\(=\frac{-1}{-99}=\frac{1}{99}\)
\(\Rightarrow\hept{\begin{cases}v=\frac{-49}{99}\\u=\frac{50}{99}\end{cases}}\Rightarrow x=\frac{4901}{99}\)(tm)
+) \(uv=2450\)
hay \(\left(x-49\right)\left(x-50\right)=2450\)
\(\Leftrightarrow x^2-99x+2450=2450\)
\(\Leftrightarrow x^2-99x=0\Leftrightarrow x\left(x-99\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=99\end{cases}}\left(tm\right)\)
Vậy phương trình có 3 nghiệm \(S=\left\{0;\frac{4901}{99};99\right\}\)
Ta có : \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{49}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)
\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{49}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{49}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
<=> x - 100 = 0
<=> x = 100
Vậy ..
Ta có: \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{48}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)
\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{48}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{48}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
mà \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}>0\)
nên x-100=0
hay x=100
Vậy: S={100}
\(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
\(\Rightarrow\dfrac{x-49}{50}+\dfrac{x-50}{49}-\dfrac{49}{x-50}-\dfrac{50}{x-49}=0\)
\(\Leftrightarrow\left(\dfrac{x-49}{50}-\dfrac{50}{x-49}\right)+\left(\dfrac{x-50}{49}-\dfrac{49}{x-50}\right)=0\)
\(\Leftrightarrow\left(x-49\right)-50+\left(x-50\right)-49=0\)
\(\Leftrightarrow2x-198=0\)
\(\Leftrightarrow x=99\)
K có mẫu chúng sao khử mẫu được vậy