Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bài ra ta có : \(x+y+z=49\)
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\\ =\dfrac{12x+12y+12z}{18+16+15}\\ =\dfrac{12\left(x+y+z\right)}{49}\\ =\dfrac{12\cdot49}{49}\\ =12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\Rightarrow12x=216\Rightarrow x=18\\\dfrac{12y}{16}=12\Rightarrow12y=192\Rightarrow y=16\\\dfrac{12z}{15}=12\Rightarrow12z=180\Rightarrow z=15\end{matrix}\right.\)
\(\text{Vậy }x=18\\ y=16\\ z=15\)
b) Theo bài ra ta có : \(2x+3y-z=50\)
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2\left(x-1\right)}{4}=\dfrac{3\left(y-2\right)}{9}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{2x-2}{4}=\dfrac{3y-2}{9}=\dfrac{z-3}{4}=\\ \dfrac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\\ =\dfrac{2x-2+3y-6-z+3}{9}\\ =\dfrac{\left(2x+3y-z\right)-\left(2+6-3\right)}{9}\\ =\dfrac{50-5}{9}\\ =\dfrac{45}{9}\\ =5\\ \)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x-2}{4}=5\Rightarrow2x-2=20\Rightarrow2x=22\Rightarrow x=11\\\dfrac{3y-6}{9}=5\Rightarrow3y-6=45\Rightarrow3y=51\Rightarrow y=17\\\dfrac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\end{matrix}\right.\)
\(\text{Vậy }x=11\\ y=17\\ z=23\)
b \(\Leftrightarrow3^x\cdot9+4\cdot3^x\cdot3+3^x\cdot\dfrac{1}{3}=6^6\)
\(\Leftrightarrow3^x=6^6:\left(9+4\cdot3+\dfrac{1}{3}\right)=2187\)
hay x=7
c: \(\Leftrightarrow2^{x-1}=24-16+3-3=8\)
=>x-1=3
hay x=4
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{-2x+7y-3z}{6+28-15}=\dfrac{171}{19}=9\)
Do đó: x=-27; y=36; z=45
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
2, \(\Rightarrow\left\{{}\begin{matrix}\\\dfrac{5}{4}x-\dfrac{7}{2}=0\\\dfrac{5}{8}x+\dfrac{3}{5}=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{5}\\\\x=\dfrac{-24}{25}\\\end{matrix}\right.\)
a, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có :
\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)
b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có :
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)
c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)
d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có :
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)
e, Câu cuối bn làm tương tự như câu a, b, c nhé!
a: =>||12x-1/2|-2|=-2/3x3/4=-6/12=-1/2(loại)
b: =>2/3-1/3x-1/2+2/3x=2x+2/3
=>-5/3x=1/2
=>x=-1/2:5/3=-1/2x3/5=-3/10
c: =>|3/2x+1/4|=2+3/4=11/4
=>3/2x+1/4=11/4 hoặc 3/2x+1/4=-11/4
=>3/2x=5/2 hoặc 3/2x=-3
=>x=3/5 hoặc x=-3:3/2=-2
a. \(\dfrac{-39}{7}:x=26\)
x = \(\dfrac{-39}{7}:26\)
x = \(\dfrac{-3}{14}\)
b. \(x:\dfrac{13}{5}=\dfrac{7}{4}\)
x = \(\dfrac{7}{4}.\dfrac{13}{5}\)
x = \(\dfrac{91}{20}\)
c. x = \(\dfrac{-3}{5}-\dfrac{1}{2}\)
x = \(\dfrac{-11}{10}\)
d. \(x-\dfrac{3}{4}=\dfrac{9}{4}\)
x = \(\dfrac{9}{4}+\dfrac{3}{4}\)
x = 3
e. \(\dfrac{7}{8}:x=\dfrac{14}{3}\)
x = \(\dfrac{7}{8}:\dfrac{14}{3}\)
x = \(\dfrac{3}{16}\)
f. \(x:\dfrac{8}{3}=\dfrac{13}{3}\)
x = \(\dfrac{13}{3}.\dfrac{8}{3}\)
x = \(\dfrac{104}{9}\)
g. x = \(\dfrac{4}{10}-\dfrac{2}{5}\)
x = 0
chúc bạn học tốt
làm câu b , bài 1 nhé
A =(ghi lại )
=> 2A=2+22+23+24+....+2100+2101
=> 2A - A = A = 2+22+23+24+....+2100+2101 -1 -2-22-23-....-2100
=>A = 2101-1 < 2101
Vậy A < B
Bài 1:
a) \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{19}{81.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
b) Ta có: \(A=2^0+2^1+...+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{101}\)
\(\Rightarrow2A-A=2^{101}-2^0\)
\(\Rightarrow A=2^{201}-1< 2^{101}\)
\(\Rightarrow A< B\)
Vậy A < B
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne4\end{matrix}\right.\)
\(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\)
\(\Leftrightarrow\left(x-3\right).\left(x-4\right)+\left(x-2\right)^2=-\left(x-2\right).\left(x-4\right)\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow3x^2-9x-8x+24=0\)
\(\Leftrightarrow\left(3x-8\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=3\end{matrix}\right.\left(\text{thỏa}\right)\)
\(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\left(x\ne\left\{2;4\right\}\right)\\ =>\dfrac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\\ =>x^2-3x-4x+12+x^2-4x+4=-\left(x-2\right)\left(x-4\right)\\ =>2x^2-11x+16=-x^2+6x-8\\ =>3x^2-17x+24=0\\ =>\left(x-3\right)\left(3x-8\right)=0\\ =>\left[{}\begin{matrix}x=3\\x=\dfrac{8}{3}\end{matrix}\right.\left(TMDK\right)\)