Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Để C<-1 thì C+1<0
=>-3 căn x+2 căn x+4<0
=>-căn x<-4
=>x>16
Sửa đề: A>-4
\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x-1+1-\sqrt{x}}{x+\sqrt{x}}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(A+4=\dfrac{x-2\sqrt{x}+1+4\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}>0\)
=>A>-4
\(\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}+\frac{\sqrt{2}+1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{\sqrt{2}}{\left(1+\sqrt{2}\right)\sqrt{2}}+\frac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}\left(\sqrt{2}+1\right)}=\frac{\sqrt{2}-1}{2+\sqrt{2}}-\frac{\sqrt{2}}{2+\sqrt{2}}+\frac{3+2\sqrt{2}}{2+\sqrt{2}}=\frac{\sqrt{2}-1-\sqrt{2}+3+2\sqrt{2}}{2+\sqrt{2}}=\frac{2+2\sqrt{2}}{2+\sqrt{2}}\) \(b,\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}=\left(\sqrt{x}-2\right)+\frac{10-x}{\sqrt{x}+2}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}=\frac{x-4+10-x}{\sqrt{x}+2}=\frac{6}{\sqrt{x}+2}\)
\(c,\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\left(1-\sqrt{x}\right)}{\sqrt{x}+x}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}+1\right)\sqrt{x}}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)
ma \(\left(1+\sqrt{x}\right)^2>4\) voi moi x
\(\Rightarrow A>4\)
ĐKXĐ: \(x>0\)
\(\dfrac{x-1}{\sqrt{x}}>0\\ \Rightarrow x-1>0\\ \Rightarrow x>1\)
\(\dfrac{x-1}{\sqrt{x}}>0\)
\(=>x-1=0\)
\(x=1\)