\(\dfrac{x-14}{x^2-4x}-\dfrac{3}{2x}+\dfrac{x+1}{2x-8}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2022

  \(\dfrac{x-14}{x^2-4x}\) - \(\dfrac{3}{2x}\) + \(\dfrac{x+1}{2x-8}\) Đk x #0; x # 4

\(\dfrac{x-14}{x(x-4)}\) - \(\dfrac{3}{2x}\) + \(\dfrac{x+1}{2(x-4)}\)

\(\dfrac{2.(x-14)-3.(x-4)+x.(x+1)}{2.x.(x-4)}\)

\(\dfrac{2x-28-3x+12+x^2+x}{2x(x-4)}\)

\(\dfrac{x^2-16}{2x(x-4)}\)

\(\dfrac{(x-4).(x+4)}{2x(x-4)}\)

\(\dfrac{x+4}{2x}\)

 

b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)

=>3x+21=2

=>x=-19/3

d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)

=>8x=8

hay x=1

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

29 tháng 11 2017

1) \(\dfrac{x}{x+1}-\dfrac{2x}{x-1}+\dfrac{x+3}{x^2-1}\)

\(=\dfrac{x}{x+1}-\dfrac{2x}{x-1}+\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}\) MTC: \(\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x-1\right)-2x\left(x+1\right)+\left(x+3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-x-2x^2-2x+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2-2x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2+x-3x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-\left(x^2-x\right)-\left(3x-3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x\left(x-1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)\left(-x-3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x-3}{x+1}\)

2) \(\dfrac{5}{x+1}-\dfrac{10}{x-x^2-1}-\dfrac{15}{x^3+1}\)

\(=\dfrac{5}{x+1}-\dfrac{10}{-\left(x^2-x+1\right)}-\dfrac{15}{x^3+1}\)

\(=\dfrac{5}{x+1}+\dfrac{10}{\left(x^2-x+1\right)}-\dfrac{15}{\left(x+1\right)\left(x^2-x+1\right)}\) MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)

\(=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{10\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5\left(x^2-x+1\right)+10\left(x+1\right)-15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x}{x^2-x+1}\)

29 tháng 11 2017

3) \(\dfrac{2}{2x+1}-\dfrac{1}{2x-1}-\dfrac{2}{1-4x^2}\)

\(=\dfrac{2}{2x+1}-\dfrac{1}{2x-1}+\dfrac{2}{4x^2-1}\)

\(=\dfrac{2}{2x+1}-\dfrac{1}{2x-1}+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\) MTC: \(\left(2x-1\right)\left(2x+1\right)\)

\(=\dfrac{2\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{2\left(2x-1\right)-\left(2x+1\right)+2}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{4x-2-2x-1+2}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{2x-1}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{1}{2x+1}\)

4) \(\dfrac{3x^2+5x+14}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac{4}{x+1}\)

\(=\dfrac{3x^2+5x+14}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x-1}{x^2-x+1}-\dfrac{4}{x+1}\) MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)

\(=\dfrac{3x^2+5x+14}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{4\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(3x^2+5x+14\right)+\left(x-1\right)\left(x+1\right)-4\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3x^2+5x+14+x^2-1-4x^2+4x-4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{9x+9}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{9\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{9}{x^2-x+1}\)

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

28 tháng 4 2018

câu nào cũng ghi lại đề nha

a) \(x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b)\(x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\left(x+1\right)\left(x+2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)

28 tháng 4 2018

d) \(\dfrac{1}{x-2}+3-\dfrac{3-x}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3\left(x-2\right)-\left(3-x\right)}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3x-6-3+x}{x-2}=0\) ( đk \(x\ne2\) )

\(\Leftrightarrow4x-8=0\Rightarrow x=2\)

đ) \(\dfrac{8-x}{x-7}-8-\dfrac{1}{x-7}=0\)

\(\Leftrightarrow\dfrac{8-x-8\left(x-7\right)-1}{x-7}=0\) (đk \(x\ne7\))

\(\Leftrightarrow8-x-8x+56-1=0\)

\(\Leftrightarrow-9x+63=0\)

\(\Leftrightarrow x=7\)

Giải các phương trình có chứa ẩn ở mẫu sau: a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\) b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\) d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\) f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\) g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\) h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\) j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\) k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\) l,...
Đọc tiếp

Giải các phương trình có chứa ẩn ở mẫu sau:

a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)

b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)

d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)

f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)

g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)

j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)

l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)

p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)

z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)

s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)

3
15 tháng 11 2017

2)

a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)

\(=\dfrac{6x}{xy}\)

\(=\dfrac{6}{y}\)

b) \(\dfrac{2x^2}{y}.3xy^2\)

\(=\dfrac{2x^2.3xy^2}{y}\)

\(=\dfrac{6x^3y^2}{y}\)

\(=6x^3y\)

c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)

\(=\dfrac{15x.2y^2}{7y^3.x^2}\)

\(=\dfrac{30xy^2}{7x^2y^3}\)

\(=\dfrac{30}{7xy}\)

d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)

\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)

\(=\dfrac{2y}{5x\left(x-y\right)}\)

28 tháng 6 2017

Phép chia các phân thức đại số