Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)
\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)
c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)
d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)
\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)
\(=\dfrac{x}{x+y}\)
a: \(=\dfrac{x+1}{x+2}\cdot\dfrac{x+3}{x+2}\cdot\dfrac{x+1}{x+3}=\dfrac{\left(x+1\right)^2}{\left(x+2\right)^2}\)
b: \(=\dfrac{x+1}{x+2}:\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+3\right)^2}\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+1\right)\left(x+2\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)
c: \(=\dfrac{\left(x+3\right)\left(x-1\right)-\left(2x-1\right)\left(x+1\right)-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2x-3-2x^2-2x+x+1-x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+1}{\left(x-1\right)\left(x+1\right)}=-1\)
a) PT \(\Leftrightarrow\dfrac{x^2-x+2}{\left(x-1\right)^3}=\dfrac{A+B\left(x-1\right)+C\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(\Leftrightarrow x^2-x+2=A+Bx-B+Cx^2-2Cx+C\)
\(\Leftrightarrow x^2-x+2=Cx^2+x\left(B-2C\right)+\left(A+C-B\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}C=1\\B-2C=-1\\A+C-B=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=2\\B=1\\C=1\end{matrix}\right.\)
b: \(\Leftrightarrow\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{A\cdot x^2+A+\left(Bx+C\right)\left(x-1\right)}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2\cdot A+A+x^2\cdot B-x\cdot B+x\cdot C-C=x^2+2x-1\)
\(\Leftrightarrow x^2\left(A+B\right)+x\left(-B+C\right)+A-C=x^2+2x-1\)
=>A+B=1; -B+C=2; A-C=-1
=>A+C=3; A-C=-1; A+B=1
=>A=1; C=2; B=1-A=0
1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Mấy bài này đăng nhiều rồi bạn ;v
Bài 1: Nhân cả 2 vế cho a+b+c rồi rút gọn được đpcm
Bài 2: Thêm 1 rồi bớt 1 :v (x+y+xy+1-1)
Giải PT
Nguyễn Huy TúTruy kíchAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiVõ Đông Anh TuấnMashiro Shiina