\(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)

Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)

      TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1 

      TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)

      TS =  2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))

A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)

 A = 2023

1 tháng 12 2023

Em cảm ơn ạ

16 tháng 7 2023

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

24 tháng 8 2021

\(B=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=-\dfrac{2}{3}\)

24 tháng 8 2021

\(B=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=\dfrac{1}{3}-\dfrac{3}{3}=-\dfrac{2}{3}\)

12 tháng 12 2021

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

30 tháng 4 2024

S=P nhé

 

22 tháng 2 2023

a)

`(2x-1)(x+2/3)=0`

\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

b)

\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)

\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)

\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)

\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)

\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)

22 tháng 2 2023

sai rồi , x không thể có 2 giá trị

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

30 tháng 10 2023

S = 1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²

⇒ S/3 = 1/3² + 1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³

⇒ 2S/3 = S - S/3

= (1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²) - (1/3² +1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³)

= 1/3 - 1/3²⁰²³

⇒ S = (1/3 - 1/3²⁰²³) : 2/3

= (1 - 1/3²⁰²²) : 2

Lại có: 1 - 1/3²⁰²² < 1

⇒ S < 1/2

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

20 tháng 7 2018

A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)

= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)

= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)

= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)

= \(\dfrac{215}{1}=215\)

20 tháng 7 2018

B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)

= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)

= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)

= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)

= \(\dfrac{300}{2}=150\)