K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

\(\dfrac{ab+a^2}{b^2-5b+5a-a^2}\cdot\dfrac{a^2-10a+25-b^2}{a^2-b^2}\)

\(=\dfrac{a\left(a+b\right)}{\left(b^2-a^2\right)-\left(5b-5a\right)}\cdot\dfrac{\left(a-5\right)^2-b^2}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{a\left(a+b\right)}{\left(b-a\right)\left(b+a\right)-5\left(b-a\right)}\cdot\dfrac{\left(a-5-b\right)\left(a-5+b\right)}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{a}{a-b}\cdot\dfrac{\left(a-b-5\right)\left(a+b-5\right)}{\left(b-a\right)\left(b+a-5\right)}\)

\(=\dfrac{a}{a-b}\cdot\dfrac{a-b-5}{b-a}=\dfrac{-a\left(a-b-5\right)}{\left(a-b\right)^2}\)

a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)

\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)

\(=\dfrac{3a-1}{2}\)

\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)

b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)

\(=\dfrac{1}{b-3}\)

\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)

\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)

2 tháng 1 2021

Rắc rối vậy

27 tháng 12 2020

\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)

27 tháng 12 2020

\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)

4 tháng 7 2017

\(\dfrac{4a-4b}{5a+5b}.x=\dfrac{a^2-b^2}{a^2+2ab+b^2}\)

\(\Leftrightarrow\dfrac{4\left(a-b\right)}{5\left(a+b\right)}.x=\dfrac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)^2}\)

\(\Leftrightarrow x=\dfrac{a-b}{a+b}.\dfrac{5\left(a+b\right)}{4\left(a-b\right)}\)

\(\Leftrightarrow x=\dfrac{5}{4}\)

Vậy \(x=\dfrac{5}{4}\)

4 tháng 7 2017

Ta có: \(\dfrac{4\left(a-b\right)}{5\left(a+b\right)}x=\dfrac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)^2}\)

\(\Rightarrow\)\(\dfrac{4\left(a-b\right)}{5\left(a+b\right)}x=\dfrac{a-b}{a+b}\)\(\Rightarrow\dfrac{4}{5}x=\dfrac{a-b}{a+b}.\dfrac{a+b}{a-b}=1\)

\(\Rightarrow\)x = \(1:\dfrac{4}{5}=\dfrac{5}{4}\)

Chúc các bạn học tốtbanh

6 tháng 4 2023

`a)` bạn xem lại đề ạ

`b)`

`a<b`

`<=>-5a> -5b`

`<=>-5a+7> -5b+7`

mà `-5b+7> -5b-1`

`<=>-5a+7 > -5b-1`

8 tháng 8 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)\(=\dfrac{\dfrac{a}{k}.b}{\dfrac{c}{k}.d}=\dfrac{ab}{cd}=VT\)

Vậy...

b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)

Suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(bk\right)^2+3\left(bk\right).b}{11\left(bk\right)^2-8b^2}\)\(=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3\left(dk\right).d}{11\left(dk\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

8 tháng 8 2023

a) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(ad=bc\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)

(theo tính chất dãy tỉ số bằng nhau)

=> (đpcm)

b) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)(theo tính chất dãy tỉ số bằng nhau)

=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) (đpcm)

c) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)          => \(\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}\)

=> \(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\) (theo tính chất dãy tỉ số bằng nhau)

=> \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)(đpcm)

#Ayumu

23 tháng 7 2023

a) \(\dfrac{3a^2}{10b^3}\cdot\dfrac{15b}{9a^4}\)

\(=\dfrac{3a^2\cdot15b}{10b^3\cdot9a^4}\)

\(=\dfrac{1\cdot3}{2\cdot b^2\cdot3\cdot a^2}=\dfrac{3}{6a^2b^2}\)

b) \(\dfrac{x-3}{x^2}\cdot\dfrac{4x}{x^2-9}\)

\(=\dfrac{x-3}{x^2}\cdot\dfrac{4x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{\left(x-3\right)\cdot4x}{x^2\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{4}{x\left(x+3\right)}\)

c) \(\dfrac{a^2-6x+9}{a^2+3a}\cdot\dfrac{2a+6}{a-3}\)

\(=\dfrac{\left(a-3\right)^2}{a\left(a+3\right)}\cdot\dfrac{2\cdot\left(a+3\right)}{a-3}\)

\(=\dfrac{\left(a-3\right)^2\cdot2\cdot\left(a+3\right)}{a\left(a+3\right)\left(a-3\right)}\)

\(=\dfrac{2\left(a-3\right)}{a}\)

d) \(\dfrac{x+1}{x}\cdot\left(x+\dfrac{2-x^2}{x^2-1}\right)\)

\(=\dfrac{\left(x+1\right)\cdot x}{x}+\dfrac{x+1}{x}\cdot\dfrac{2-x^2}{x^2-1}\)

\(=x+1+\dfrac{x+1}{x}\cdot\dfrac{2-x^2}{\left(x+1\right)\left(x-1\right)}\)

\(=x+\dfrac{2-x^2}{x\left(x-1\right)}\)

=))) để r xem

23 tháng 9 2017

Ta có: \(B=[\left(b+c\right)^2-a^2].\)\(\dfrac{\dfrac{a+b+c}{b+c}}{\dfrac{b+c-a}{b+c}}\)\(.\)\(\dfrac{2bc}{a+b+c}\)

\(=\left(b+c+a\right)\left(b+c-a\right).\dfrac{a+b+c}{b+c-a}.\dfrac{2bc}{a+b+c}\)

\(=\left(a+b+c\right).2bc=2abc+2b^2c+2bc^2\)

26 tháng 11 2022

\(C=\dfrac{\left(b-c+c-a\right)^3+3\left(b-c\right)\left(c-a\right)\left(b-c+c-a\right)+\left(a-b\right)^3}{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{a^2b-b^2a-a^2c+b^2c+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{\left(a-b\right)\cdot ab-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a-b\right)\left(ab-ac-bc+c^2\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)}{a\left(b-c\right)-c\left(b-c\right)}=3\)

7 tháng 5 2017

Theo AM-GM ta có:

\(\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\a^2+b^2\ge2\sqrt{a^2b^2}=2ab\end{matrix}\right.\)

\(\Rightarrow a^2+2b^2+1\ge2ab+2b\Rightarrow a^2+2b^2+3\ge2ab+2b+2\)

\(=2\left(ab+b+1\right)\Rightarrow\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2\left(ab+b+1\right)}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{1}{b^2+2c^2+3}\le\dfrac{1}{2\left(bc+c+1\right)};\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2\left(ca+a+1\right)}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{ab}{ab+b+1}+\dfrac{b}{ab+b+1}+\dfrac{1}{ab+b+1}\right)\left(abc=1\right)\)

\(=\dfrac{1}{2}\left(\dfrac{ab+b+1}{ab+b+1}\right)=\dfrac{1}{2}=VP\)

7 tháng 5 2017

cái đề hẳn hoi còn ko viết nổi