\(\dfrac{a}{2b+3c}=\dfrac{b}{2c+3a}=\dfrac{c}{2a+3b}\). Chứng minh rằng:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

Tham khảo thêm thôi chứ mình không chắc nhé! dạng này mình chưa từng gặp (hay có gặp nhưng rất ít). Thôi không dài dòng nữa. Vào bài thôi.

Giải

Theo t/c dãy tỉ số bằng nhau: \(\dfrac{a}{2b+3c}=\dfrac{b}{2c+3a}=\dfrac{c}{2a+3b}=\dfrac{a+b+c}{2b+3c+2c+3a+2a+3b}\)

\(=\dfrac{a+b+c}{\left(2b+3b\right)+\left(2c+3c\right)+\left(2a+3a\right)}=\dfrac{a+b+c}{5b+5c+5a}\) (*)

Từ (*) ta có: \(\dfrac{a}{2b+3c}=\dfrac{b}{2c+3a}=\dfrac{c}{2a+3b}=\dfrac{a+b+c}{5b+5c+5a}=\dfrac{1}{5}\)

Vì: \(5.\dfrac{a}{2b+3c}=5.\dfrac{b}{2c+3a}=5.\dfrac{c}{2a+3b}=\dfrac{5a+5b+5c}{5b+5c+5a}=1\)

\(1:5=\dfrac{1}{5}\)

\(\Leftrightarrow5a\left(2b+3c\right)=5b\left(2c+3a\right)=5c\left(2a+3b\right)\)

\(\Leftrightarrow10ab+15ac=10bc+15ba=10ca+15cb\Leftrightarrow a=b=c^{\left(đpcm\right)}\)

11 tháng 8 2018

Giải chi tiết giúp mình nha!vuihihi

4 tháng 3 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\) \(\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Do \(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\)

\(\Rightarrow2b+c-a+a=3a\)

\(\Rightarrow2b+c=3a\Rightarrow3a-2b=c\)

Lại do \(\dfrac{2c-b+a}{b}=2\) \(\Rightarrow2c-b+a=2b\)

\(\Rightarrow2c+a-3b=0\)

\(\Rightarrow3b-2c=a\)

Ta lại có \(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\)

\(\Rightarrow2a+b-c+c=3c\)

\(\Rightarrow2a +b=3c\)

\(\Rightarrow3c-2a=b\)

Khi đó:

\(P=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\) (đoạn này mk làm hơi tắt, nếu không hiểu thì nói mk nhé!)

Vậy \(P=\dfrac{1}{8}.\)

Chú ý: Ở tử của p/s phải là 3a \(-2b\) mới làm được bài này.

5 tháng 3 2017

uh, mk nhầm leu

30 tháng 7 2017

Ta có: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\dfrac{2b+c-a}{a}=2\Leftrightarrow2b+c-a=2a\Leftrightarrow2b+c=3a\Leftrightarrow c=3a-2b\)

Và : \(2b+c=3a\Leftrightarrow2b=3a-c\)

Tương tự: \(3b-2c=a\)\(2c=3b-a\)

\(3c-2a=b\)\(2a=3c-b\)

Thay vào Q, ta được:

\(Q=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2b+c-a}{a}=\frac{2c+a-b}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}\)

\(=\frac{2(a+b+c)}{a+b+c}=2\)

Do đó: \(\left\{\begin{matrix} 2b+c-a=2a\\ 2c+a-b=2b\\ 2a+b-c=2c\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\) và \(\left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\)

Suy ra: \(P=\frac{(3a-2b)(3b-2c)(3c-2a)}{(3a-c)(3b-a)(3c-b)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)

6 tháng 3 2018

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)<=>\(\dfrac{2b+c}{a}-1=\dfrac{2c+a}{b}-1=\dfrac{2a+b}{c}-1\)

<=>\(\dfrac{2b+c}{a}=\dfrac{2c+a}{b}=\dfrac{2a+b}{c}=\dfrac{2b+c+2c+a+2a+b}{a+b+c}=\dfrac{3\left(a+b+c\right)}{a+b+c}=3\)=>\(\left\{{}\begin{matrix}2b+c=3a\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3a-c=2b\end{matrix}\right.\\2c+a=3b\Rightarrow\left\{{}\begin{matrix}3b-2c=a\\3b-a=2c\end{matrix}\right.\\2a+b=3c\Rightarrow\left\{{}\begin{matrix}3c-2a=b\\3c-b=2a\end{matrix}\right.\end{matrix}\right.\) thay vào

\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
7 tháng 11 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a2a+b-c}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2\)

\(\left\{\begin{matrix} 2b+c-a=2a\\ 2c-b+a=2b\\ 2a+b-c=2c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2b+c=3a\\ 2c+a=3b\\ 2a+b=3c\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\Rightarrow (3a-2b)(3b-2c)(3c-2a)=abc\) (1)

\(\left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\Rightarrow (3a-c)(3b-a)(3c-b)=8abc\) (2)

Từ (1),(2) suy ra \(M=\frac{abc}{8abc}=\frac{1}{8}\)

25 tháng 3 2018

\(a;b;c>0\) nên \(a+b+c>0\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{2b+c-a}{a}=\dfrac{2c+a-b}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}2b+c=3a\Leftrightarrow3a-2b=c\\2c+a=3b\Leftrightarrow3b-2c=a\\2a+b=3c\Leftrightarrow3c-2a=b\end{matrix}\right.\)

Khi đó: \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{abc}=\dfrac{abc}{abc}=1\)

21 tháng 2 2018

b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.