Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)
<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)
<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)
vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0
nên x-2004=0=>x=2004
vyaj.......
bài 2:
\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
vì 1/15+1/13+1/11+1/9 khác 0
=>x-100=0<=>x=100
a) ĐKXĐ : 9x2 - 16 # 0
=> ( 3x - 4)( 3x + 4) # 0
=> x # \(\dfrac{4}{3}\); x # \(-\dfrac{4}{3}\)
Vậy,...
b) ĐKXĐ : x2 - 4x + 4 # 0
=> ( x - 2)2 # 0
=> x # 2
Vậy,...
c) ĐKXĐ : x2 - 1# 0
=> x # 1 ; x # -1
vậy,..
d) ĐKXĐ : 2x2 - x # 0
=> x( 2x - 1) # 0
=> x # 0 ; x # \(\dfrac{1}{2}\)
Vậy,...
a,\(\dfrac{x^2-4}{9x^2-16}\)
Phân thức trên được xác định \(\Leftrightarrow9x^2-16\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{4}{3}\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
b,\(\dfrac{2x-1}{x^2-4x+4}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-4x+4\ne0\)
\(\Leftrightarrow\left(x-2\right)^2\ne0\)
\(\Leftrightarrow x-2\ne0\)
\(\Leftrightarrow x\ne2\)
c,\(\dfrac{x^2-4}{x^2-1}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-1\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vậy...
d,\(\dfrac{5x-3}{2x^2-x}\)
Phân thức trên được xác định \(\Leftrightarrow2x^2-x\ne0\)
\(\Leftrightarrow x\left(2x-1\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
điều kiện xác định \(x\ne0\)
ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)
\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)
tới đây bn bấm máy tính nha
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|>0\forall x\)
mà \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
nên x>0
Với x>0, ta được:
\(x+\frac{1}{101}+x+\frac{2}{101}+x+\frac{3}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x-101x+\frac{5050}{101}=0\)
\(\Leftrightarrow-x+50=0\)
hay x=50
Vậy: S={50}
Hai câu là hoàn toàn giống nhau, mình làm câu a, câu b bạn tự làm tương tự:
ĐKXĐ: ...
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{4}{4x+\frac{7}{x}-8}+\frac{3}{4x+\frac{7}{x}-10}=1\)
Đặt \(4x+\frac{7}{x}-10=t\)
\(\Leftrightarrow\frac{4}{t+2}+\frac{3}{t}=1\Leftrightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)
\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x+\frac{7}{x}-10=-1\\4x+\frac{7}{x}-10=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\\4x^2-16x+7=0\end{matrix}\right.\) (bấm casio)
b) \(\frac{8-y}{y-7}+\frac{1}{7-y}=8\)
ĐKXĐ: \(x\ne7\)
\(\Leftrightarrow\frac{\left(8-y\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}+\frac{y-7}{\left(y-7\right)\left(7-y\right)}=\frac{8\left(y-7\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}\)
\(\Rightarrow56-15y+y^2+y-7=112y-8y^2-392\)
\(\Leftrightarrow49-14y+y^2=112y-8y^2-392\)
\(\Leftrightarrow9y^2-126y+441=0\)
\(\Leftrightarrow9\left(y^2-14y+49\right)=0\)
\(\Leftrightarrow\left(y-7\right)^2=0\)
\(\Leftrightarrow y-7=0\)
\(\Leftrightarrow y=7\left(Loại\right)\)
Vậy không có giá trị nào để biểu thức \(\frac{8-y}{y-7}+\frac{1}{7-y}\) có giá trị bằng 8.
a) \(\frac{y-1}{y-2}-\frac{y+3}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
ĐKXĐ: \(y\ne2;y\ne4\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)}{\left(y-2\right)\left(y-4\right)}-\frac{\left(y+3\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
\(\Rightarrow y^2-5y+4-y^2-y+6=-2\)
\(\Leftrightarrow10-6y=-2\)
\(\Leftrightarrow-6y=-12\)
\(\Leftrightarrow y=2\left(Loại\right)\)
Vậy không có giá trị nào của y để biểu thức \(\frac{y-1}{y-2}-\frac{y+3}{y-4}\) và \(\frac{-2}{\left(y-2\right)\left(y-4\right)}\) có giá trị bằng nhau.
- Đề lỗi phải khum ạ ?
Lời giải:
ĐKXĐ: $x\neq \pm 4$
PT $\Leftrightarrow \frac{8(x-4)+8(x+4)}{x^2-16}=\frac{25}{3}$
$\Leftrightarrow \frac{16x}{x^2-16}=\frac{25}{3}$
$\Rightarrow 48x=25x^2-400$
$\Leftrightarrow 25x^2-48x-400=0$
$\Leftrightarrow (5x-\frac{24}{5})^2=\frac{10576}{25}$
$\Rightarrow x=\frac{24\pm 4\sqrt{661}}{25}$ (đều thỏa mãn)