\(\dfrac{8}{x+4}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

- Đề lỗi phải khum ạ ?

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

ĐKXĐ: $x\neq \pm 4$

PT $\Leftrightarrow \frac{8(x-4)+8(x+4)}{x^2-16}=\frac{25}{3}$

$\Leftrightarrow \frac{16x}{x^2-16}=\frac{25}{3}$

$\Rightarrow 48x=25x^2-400$

$\Leftrightarrow 25x^2-48x-400=0$

$\Leftrightarrow (5x-\frac{24}{5})^2=\frac{10576}{25}$

$\Rightarrow x=\frac{24\pm 4\sqrt{661}}{25}$ (đều thỏa mãn)

13 tháng 1 2018

bài 1:

\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)

<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)

<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)

<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)

<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)

vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0

nên x-2004=0=>x=2004

vyaj.......

bài 2:

\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)

<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)

<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)

<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)

vì 1/15+1/13+1/11+1/9 khác 0

=>x-100=0<=>x=100

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32

31 tháng 1 2018

Mở đầu về phương trìnhMở đầu về phương trình

31 tháng 1 2018

Giáo án hả :v Nhìn quen quenn :v

22 tháng 12 2017

a) ĐKXĐ : 9x2 - 16 # 0

=> ( 3x - 4)( 3x + 4) # 0

=> x # \(\dfrac{4}{3}\); x # \(-\dfrac{4}{3}\)

Vậy,...

b) ĐKXĐ : x2 - 4x + 4 # 0

=> ( x - 2)2 # 0

=> x # 2

Vậy,...

c) ĐKXĐ : x2 - 1# 0

=> x # 1 ; x # -1

vậy,..

d) ĐKXĐ : 2x2 - x # 0

=> x( 2x - 1) # 0

=> x # 0 ; x # \(\dfrac{1}{2}\)

Vậy,...

22 tháng 12 2017

a,\(\dfrac{x^2-4}{9x^2-16}\)

Phân thức trên được xác định \(\Leftrightarrow9x^2-16\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{4}{3}\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)

Vậy...

b,\(\dfrac{2x-1}{x^2-4x+4}\)

Phân thức trên được xác định \(\Leftrightarrow x^2-4x+4\ne0\)

\(\Leftrightarrow\left(x-2\right)^2\ne0\)

\(\Leftrightarrow x-2\ne0\)

\(\Leftrightarrow x\ne2\)

c,\(\dfrac{x^2-4}{x^2-1}\)

Phân thức trên được xác định \(\Leftrightarrow x^2-1\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

Vậy...

d,\(\dfrac{5x-3}{2x^2-x}\)

Phân thức trên được xác định \(\Leftrightarrow2x^2-x\ne0\)

\(\Leftrightarrow x\left(2x-1\right)\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

16 tháng 2 2018

điều kiện xác định \(x\ne0\)

ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)

\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)

tới đây bn bấm máy tính nha

16 tháng 2 2018

câu b lm tương tự nha

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|>0\forall x\)

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

nên x>0

Với x>0, ta được:

\(x+\frac{1}{101}+x+\frac{2}{101}+x+\frac{3}{101}+...+x+\frac{100}{101}=101x\)

\(\Leftrightarrow100x-101x+\frac{5050}{101}=0\)

\(\Leftrightarrow-x+50=0\)

hay x=50

Vậy: S={50}

NV
13 tháng 4 2020

Hai câu là hoàn toàn giống nhau, mình làm câu a, câu b bạn tự làm tương tự:

ĐKXĐ: ...

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{4}{4x+\frac{7}{x}-8}+\frac{3}{4x+\frac{7}{x}-10}=1\)

Đặt \(4x+\frac{7}{x}-10=t\)

\(\Leftrightarrow\frac{4}{t+2}+\frac{3}{t}=1\Leftrightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{7}{x}-10=-1\\4x+\frac{7}{x}-10=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\\4x^2-16x+7=0\end{matrix}\right.\) (bấm casio)

13 tháng 4 2020

cảm ơn

7 tháng 6 2020

b) \(\frac{8-y}{y-7}+\frac{1}{7-y}=8\)

ĐKXĐ: \(x\ne7\)

\(\Leftrightarrow\frac{\left(8-y\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}+\frac{y-7}{\left(y-7\right)\left(7-y\right)}=\frac{8\left(y-7\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}\)

\(\Rightarrow56-15y+y^2+y-7=112y-8y^2-392\)

\(\Leftrightarrow49-14y+y^2=112y-8y^2-392\)

\(\Leftrightarrow9y^2-126y+441=0\)

\(\Leftrightarrow9\left(y^2-14y+49\right)=0\)

\(\Leftrightarrow\left(y-7\right)^2=0\)

\(\Leftrightarrow y-7=0\)

\(\Leftrightarrow y=7\left(Loại\right)\)

Vậy không có giá trị nào để biểu thức \(\frac{8-y}{y-7}+\frac{1}{7-y}\) có giá trị bằng 8.

7 tháng 6 2020

a) \(\frac{y-1}{y-2}-\frac{y+3}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

ĐKXĐ: \(y\ne2;y\ne4\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)}{\left(y-2\right)\left(y-4\right)}-\frac{\left(y+3\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Rightarrow y^2-5y+4-y^2-y+6=-2\)

\(\Leftrightarrow10-6y=-2\)

\(\Leftrightarrow-6y=-12\)

\(\Leftrightarrow y=2\left(Loại\right)\)

Vậy không có giá trị nào của y để biểu thức \(\frac{y-1}{y-2}-\frac{y+3}{y-4}\)\(\frac{-2}{\left(y-2\right)\left(y-4\right)}\) có giá trị bằng nhau.