\(\dfrac{5^{62}.16^{15}}{8^{19}.125^{21}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

125= 5^3 suy ra 125^21=(5^^3)^^21=5^63

16^15=(2^4)^15=2^60

8^19=(2^3)^19=2^57

suy ra pt tương đương (5^62*2^60)/(2^57*5^63)=2^3/5=8/5

21 tháng 3 2017

\(\dfrac{12}{5}\)

\(-\dfrac{39}{2}\)

28

\(-\dfrac{9}{4}\)

2 tháng 5 2017

Ta có:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}>4\cdot\dfrac{1}{16}=\dfrac{1}{4}\)

\(\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}>4\cdot\dfrac{1}{20}=\dfrac{1}{5}\)

=>\(\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}>\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{9}{20}\)

=>A>\(\dfrac{1}{12}+\dfrac{9}{20}\)

\(\dfrac{1}{12}>\dfrac{1}{20}\)

=>\(A>\dfrac{1}{20}+\dfrac{9}{20}=\dfrac{1}{2}\)

Vậy...

2 tháng 5 2017

bn Xuân Tuấn Trịnh ơi tại sao 4.\(\dfrac{1}{16}\)zậy.

\(B=\left|157\dfrac{13}{27}-273\dfrac{7}{19}\right|-96\dfrac{14}{27}+15\dfrac{12}{19}\)

\(=273\dfrac{7}{19}-153\dfrac{13}{27}-96\dfrac{14}{27}+15\dfrac{12}{19}\)

\(=\left(273+15+\dfrac{7}{19}+\dfrac{12}{19}\right)-\left(153+96+\dfrac{13}{27}+\dfrac{14}{27}\right)\)

\(=289-250=39\)

17 tháng 4 2017

bài giải:

đặt biểu thức bằng A

=> A= \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

ta thấy:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 3.\dfrac{1}{13}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< 3.\dfrac{1}{61}\)

=> A<\(\dfrac{1}{5}+\dfrac{3}{13}+\dfrac{3}{61}\)<\(\dfrac{1}{2}\)

=> đpcm.

14 tháng 5 2018

A=\(\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\)=\(\dfrac{5}{3}\)=0.625

0.625 > 8998

like cho mình nha!hihi

14 tháng 10 2022

\(=\dfrac{3^2\cdot5^{20}\cdot3^{27}-3\cdot3^{30}\cdot5^{18}}{7\cdot3^{29}\cdot5^{13}-3^{29}\cdot5^{19}}=\dfrac{3^{29}\cdot5^{20}-5^{18}\cdot3^{31}}{3^{29}\cdot5^{13}\cdot7-3^{29}\cdot5^{19}}\)

\(=\dfrac{3^{29}\cdot5^{18}\left(5^2-3^2\right)}{3^{29}\cdot5^{13}\left(7-5^6\right)}=5^5\cdot\dfrac{4^2}{7-5^6}\)

16 tháng 4 2018

Đặt A = \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)

2A = \(2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

2A = \(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)

2A + A = \(\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

3A = \(1-\dfrac{1}{64}\)

3A = \(\dfrac{63}{64}\) < 1

hay 3A < 1

=> A < \(\dfrac{1}{3}\)

Vậy .................. (tự kết luận)