Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
\(A=5\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+..+\dfrac{5}{26.31}\right)\)
\(A=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(A=5\left(1-\dfrac{1}{31}\right)\)
\(A=5-\dfrac{1}{155}\)
\(A< 5\rightarrowđpcm\)
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+.......\dfrac{5^2}{26.31}\)
\(\Leftrightarrow A=5\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+.........+\dfrac{5}{26.31}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+..........+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{31}\right)\)
\(\Leftrightarrow A=5.\dfrac{30}{31}=\dfrac{150}{31}\)
Bài 1:
a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)
c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
a)\(\left|-0.75\right|+\dfrac{1}{4}-2\dfrac{1}{2}\)
=0.75+0.25-2.5
=1-2.5=-1.5
b)\(15.\dfrac{1}{5}:\left(\dfrac{-5}{7}\right)-2\dfrac{1}{5}.\left(\dfrac{-7}{5}\right)\)
=3.(-1.4)+3.08
=-4.2+3.08=-1.12
c)\(\dfrac{5}{17}+\dfrac{2}{3}-\dfrac{20}{12}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{49}{51}-\dfrac{5}{3}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{-12}{17}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{11}{153}+\dfrac{12}{17}\)
=\(\dfrac{7}{9}\)
d)\(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}\)
=\(\dfrac{67}{75}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)
=-0.44+\(\dfrac{127}{175}\)
=\(\dfrac{2}{7}\)
a)\(\frac{5}{3}\)+ \(\left(\frac{-2}{7}\right)\)-(-1,2)
=\(\frac{5}{3}+\left(\frac{-2}{7}\right)+\frac{6}{5}\)
=\(\frac{175+\left(-30\right)+126}{105}\)
=\(\frac{271}{105}\)
b) \(\frac{-4}{9}+\frac{-5}{6}-\frac{17}{4}\)
=\(\frac{-16+\left(-30\right)-153}{36}\)
=\(\frac{-199}{36}\)
\(\frac{5}{3}+\left(\frac{-2}{7}\right)-\left(\frac{-6}{5}\right)\)
=\(\frac{-2}{7}-\left(\frac{5}{3}+\frac{-6}{5}\right)\)
=\(\frac{-79}{105}\)\(\frac{-2}{7}-\frac{7}{15}\)
1.
a) \(-\dfrac{4}{9}+\left(-\dfrac{5}{6}\right)-\dfrac{17}{4}=-\dfrac{16}{36}-\dfrac{30}{36}-\dfrac{153}{36}\)
\(=-\dfrac{199}{36}\)
b) \(5\dfrac{1}{2}+\left(-3\right)=5\dfrac{1}{2}-3=\dfrac{11}{2}-\dfrac{6}{2}=\dfrac{5}{2}\)
c) \(4\dfrac{9}{11}+\left(-2\dfrac{1}{11}\right)=\dfrac{53}{11}-\dfrac{23}{11}=\dfrac{30}{11}\)
2.
a) \(4,3-\left(1,2\right)=3,1\)
b) \(0-\left(-0,4\right)=0+0,4=0,4\)
c) \(-\dfrac{2}{3}-\dfrac{1}{3}=-\dfrac{3}{3}=-1\)
d) \(-\dfrac{1}{2}-\dfrac{-1}{6}=-\dfrac{1}{2}+\dfrac{1}{6}=-\dfrac{3}{6}+\dfrac{1}{6}=-\dfrac{2}{6}=-\dfrac{1}{3}\)
Ta có: \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\) \(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\) \(=1-\dfrac{1}{101}\) \(\dfrac{100}{101}\)
\(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+.....+\dfrac{5}{96.101}\)
\(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+......+\dfrac{1}{96}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{101}{101}-\dfrac{1}{101}\)
\(=\dfrac{101-1}{101}\)
\(=\dfrac{100}{101}\)
1.
a)\(-49+\left(-\dfrac{5}{6}\right)-\dfrac{17}{4}\)
\(=-49-\dfrac{5}{6}-\dfrac{17}{4}\)
\(=\dfrac{-588}{12}-\dfrac{10}{12}-\dfrac{51}{12}\)
\(=\dfrac{-588-10-51}{12}\)
\(=-\dfrac{649}{12}\)
b) \(5\dfrac{1}{2}+\left(-3\right)\)
\(=\dfrac{11}{2}-3\)
\(=\dfrac{11}{2}-\dfrac{6}{2}\)
\(=\dfrac{11-6}{2}\)
\(=\dfrac{5}{2}\)
c) \(4\dfrac{9}{11}+\left(2-2\dfrac{1}{11}\right)\)
\(=\dfrac{53}{11}+2-\dfrac{23}{11}\)
\(=\dfrac{53-23}{11}+2\)
\(=\dfrac{30}{11}+2\)
\(=\dfrac{30}{11}+\dfrac{22}{11}\)
\(=\dfrac{30+22}{11}\)
\(=\dfrac{52}{11}\)
2.
a) \(4,3-1,2=3,1\)
b) \(0-\left(-0,4\right)=0+0,4=0,4\)
c) \(-\dfrac{2}{3}-\dfrac{-1}{3}=-\dfrac{2}{3}+\dfrac{1}{3}=-\dfrac{1}{3}\)
d) \(-\dfrac{1}{2}-\dfrac{-1}{6}=-\dfrac{1}{2}+\dfrac{1}{6}=-\dfrac{3}{6}+\dfrac{1}{6}=-\dfrac{2}{6}=-\dfrac{1}{3}\)
Thực hiện các phép tính:
a) 9,6.212−(2.125−1512):149,6.212−(2.125−1512):14
b) 518−1,456:725+4,5.45518−1,456:725+4,5.45;
c) (12+0,8−113).(2,3+4725−1,28)(12+0,8−113).(2,3+4725−1,28)
d) (−5).12:[(−14)+12:(−2)]+113(−5).12:[(−14)+12:(−2)]+113.
Hướng dẫn làm bài:
a) 9,6.212−(2.125−1512):149,6.212−(2.125−1512):14
=9,6.52−(250−1712)×4=9,6.52−(250−1712)×4
=4,8.5−(1000−173)=4,8.5−(1000−173)
=24−1000+173=24−1000+173
=−976+173=−976+173
=−97013=−97013
b) 518−1,456:725+4,5.45518−1,456:725+4,5.45;
=518−1,456×257+92.45=518−1,456×257+92.45
=518−0,208×25+185=518−0,208×25+185
=518−5,2+185=518−5,2+185
=25−468+32490=25−468+32490
=−11990=−11990
c) (12+0,8−113).(2,3+4725−1,28)(12+0,8−113).(2,3+4725−1,28)
=(12+45−43).(2310+10725−3225)=(12+45−43).(2310+10725−3225)
=(15+24−4030).(2310+10725−3225)=(15+24−4030).(2310+10725−3225)
=(15+24−4030).(115+214−6450)=(15+24−4030).(115+214−6450)
=−130.26550=−130.26550
=−53300=−53300
d) (−5).12:[(−14)+12:(−2)]+113(−5).12:[(−14)+12:(−2)]+113
=−60:[14+12×(−12)]+1.13=−60:[14+12×(−12)]+1.13
=−60:[−14−14]+113=−60:[−14−14]+113
=−60:(12)+113=−60:(12)+113
=120+113=120+113
=12113
a) \(9,6.2\dfrac{1}{2}-\left(2.125-1\dfrac{5}{12}\right):\dfrac{1}{4}\)
\(=9,6.\dfrac{5}{2}-\left(250-\dfrac{17}{12}\right).4\)
\(=4,8.5-\left(1000-\dfrac{17}{3}\right)\)
\(=24-1000+\dfrac{17}{3}\)
\(=-976+\dfrac{17}{3}=-970\dfrac{1}{3}\)
b) \(\dfrac{5}{18}-1,456:\dfrac{7}{25}+4,5.\dfrac{4}{5}\)
\(=\dfrac{5}{18}-1,456.\dfrac{25}{7}+\dfrac{9}{2}.\dfrac{4}{5}\)
\(=\dfrac{5}{18}-0,208.25+\dfrac{18}{5}\)
\(=\dfrac{5}{18}-5,2+\dfrac{18}{5}\)
\(=-\dfrac{119}{90}\)
c) \(\left(\dfrac{1}{2}+0,8-1\dfrac{1}{3}\right).\left(2,3+4\dfrac{7}{25}-1,28\right)\)
\(=\left(\dfrac{1}{2}+\dfrac{4}{5}-\dfrac{4}{3}\right).\left(\dfrac{23}{10}+\dfrac{107}{25}-\dfrac{32}{25}\right)\)
\(=-\dfrac{1}{30}.\dfrac{265}{50}=-\dfrac{53}{300}\)
d) \(\left(-5\right).12:\left[\left(-\dfrac{1}{4}\right)+\dfrac{1}{2}:\left(-2\right)\right]+1\dfrac{1}{3}\)
\(=-60:\left[\dfrac{1}{4}+\dfrac{1}{2}.\dfrac{-1}{2}\right]+1.\dfrac{1}{3}\)
\(=-60:\left[-\dfrac{1}{4}-\dfrac{1}{4}\right]+1\dfrac{1}{3}\)
\(=-60:\left(\dfrac{1}{2}\right)+1\dfrac{1}{3}\)
\(=121\dfrac{1}{3}\)
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)
Đặt: \(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{26.31}\)
\(\Rightarrow\dfrac{S}{5}=\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{26.31}\\ =1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{26}-\dfrac{1}{31}\\ =1-\dfrac{1}{31}=\dfrac{30}{31}\\ \Rightarrow S=\dfrac{30}{31}.5=\dfrac{150}{31}\)
Sửa bài:
Đặt biểu thức là A. ta được:
\(\dfrac{A}{5}=\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\\ \dfrac{A}{5}=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\\ \dfrac{A}{5}=\dfrac{30}{31}\\ A=\dfrac{150}{31}.\)