Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15
\(\dfrac{7}{x-2}\)+\(\dfrac{8}{x-5}\)=3 (x khác 2 khác 5)
\(\Leftrightarrow\)7*(x-5)+8(x-2)=3(x-2)(x-5)
\(\Leftrightarrow\)15x-51=3x^2-21x+30\(\Leftrightarrow\)3x^2-36x+81=0
\(\Leftrightarrow\)\(\begin{matrix}&\end{matrix}\)\(\left[{}\begin{matrix}9\\3\end{matrix}\right.\) tmđk
16\(\dfrac{x^2-3x+6}{x^2-9}\)=\(\dfrac{1}{x-3}\)(x khác +_3)
\(\Leftrightarrow\)x^2-3x+6=x+3
\(\Leftrightarrow\)x^2-4x+3=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}3loại\\1\end{matrix}\right.\)
vậy x=1 là nghiệm của pt
17 \(\dfrac{3}{x^2-4}\) = \(\dfrac{1}{x-2}+\dfrac{1}{x+2}\)
<=> x + 2 + x - 2 = 3
<=> 2x = 3
<=> x = \(\dfrac{3}{2}\)
giải pt
a)\(\dfrac{1}{x+1}+\dfrac{3}{2x+1}=\dfrac{8}{x-2}\)
b)\(\sqrt{2x+1}+\sqrt{3-x}=\sqrt{3x+5}\)
\(\sqrt{x-\dfrac{1}{x}}-\sqrt{1-\dfrac{1}{x}}=\dfrac{x-1}{x}\)
\(\Leftrightarrow\dfrac{\left(x-\dfrac{1}{x}\right)-\left(1-\dfrac{1}{x}\right)}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{x-1}{x}=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{x-1}{x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{1}{x}\right)=0\)
Pt \(\dfrac{1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{1}{x}=0\) vô n0
=> x - 1 = 0
<=> x = 1 (nhận)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+\dfrac{1}{y}}=a\left(a\ge0\right)\\x+y=b\left(b\ge3\right)\end{matrix}\right.\), ta có hpt:
\(\left\{{}\begin{matrix}a+\sqrt{b-3}=3\left(1\right)\\a^2+b=8\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{b-3}=3-a\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-a\ge0\\b-3=9-6a+a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le a\le3\\b=a^2-6a+12\left(3\right)\end{matrix}\right.\). Thay (3) vào (2)
\(\Rightarrow a^2+a^2-6a+12=8\)
\(\Leftrightarrow2\left(a-1\right)\left(a-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\left(n\right)\)
TH1: \(a=1;b=7\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+\dfrac{1}{y}}=1\left(4\right)\\x+y=7\end{matrix}\right.\). Thay \(x=7-y\) vào (4)
\(\Rightarrow7-y+\dfrac{1}{y}=1\)
\(\Leftrightarrow7y-y^2+1=y\)
\(\Leftrightarrow\left(y-3\right)^2-10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{10}\\y=3-\sqrt{10}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4-\sqrt{10}\\x=4+\sqrt{10}\end{matrix}\right.\)
TH2: \(a=2;b=4\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+\dfrac{1}{y}}=2\left(5\right)\\x+y=4\end{matrix}\right.\). Thay \(x=4-y\) vào (5)
\(\Rightarrow4-y+\dfrac{1}{y}=4\)
\(\Leftrightarrow4y-y^2+1=4y\)
\(\Leftrightarrow\left(1-y\right)\left(1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
Vậy . . .
\(\dfrac{1}{x}+\dfrac{1}{x+50}=\dfrac{1}{60}\left(x\ne0;x\ne-5\right)\)
\(pt\Leftrightarrow\dfrac{x+50}{x\left(x+50\right)}+\dfrac{x}{x\left(x+50\right)}=\dfrac{1}{60}\)
\(\Leftrightarrow\dfrac{2x+50}{x\left(x+50\right)}=\dfrac{1}{60}\Leftrightarrow x\left(x+50\right)=60\left(2x+50\right)\)
\(\Leftrightarrow x^2+50x=120x+3000\)
\(\Leftrightarrow x^2-70x-3000=0\)
\(\Leftrightarrow x^2-100x+30x-3000=0\)
\(\Leftrightarrow x\left(x-100\right)+30\left(x-100\right)=0\)
\(\Leftrightarrow\left(x+30\right)\left(x-100\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+30=0\\x-100=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-30\\x=100\end{matrix}\right.\)
x^2-3x+2=(x-1)(x-2)
dk x≠1;2
1+(x-5)(x-1)=3/10(x^2-3x+2)
10+10x^2-60x+50=3x^2-9x+6
7x^2-54x-54=0
x=(27±3√123)/7
\(\dfrac{1}{x^2-3x+2}-\dfrac{x-5}{2-x}=\dfrac{3}{10}\)
⇔ \(\dfrac{1}{x^2-x-2x+2}+\dfrac{x-5}{x-2}=\dfrac{3}{10}\)
⇔ \(\dfrac{10}{10\left(x-1\right)\left(x-2\right)}+\dfrac{10\left(x-5\right)\left(x-1\right)}{10\left(x-1\right)\left(x-2\right)}=\dfrac{3\left(x^2-3x+2\right)}{10\left(x-1\right)\left(x-2\right)}\)( x # 1 ; x # 2)
⇔ 10 + 10( x2 - 6x + 5)= 3(x2 - 3x + 2)
⇔ 10 + 10x2 - 60x + 50 = 3x2 - 9x + 6
⇔ 7x2 - 51x - 54 = 0
Phân tích ra
Điều kiện x >= 1 hoặc x <= - 1
Với x <= - 1 thì không có nghiệm
=> x >= 1
12x/√(x^2 - 1) = 35 - 12x
Thêm điều kiện bình phương 2 vế rồi đặt nhân tử chung (3x - 5)(4x - 5)(...)
ĐK: ` x\ne 0; x \ne -100`
`4800/x-4800/(x+100)=8`
`<=>1/x-1/(x+100) =1/600`
`<=> (x+100-x)/(x(x+100) = 1/600`
`<=> 100/(x(x+100))=1/600`
`<=> x^2+100x = 60000`
\(\left[{}\begin{matrix}x=200\\x=-300\end{matrix}\right.\)
Vậy...
`4800/x-4800/(x+10)=8`
`ĐK:x ne 0,x ne -10`
`pt<=>600/x-600/(x+10)=1`
`<=>(600x+6000-600x)/(x^2+10x)=1`
`<=>6000/(x^2+10x)=1`
`<=>x^2+10x=6000`
`<=>x^2+10x-6000=0`
`Delta'=25+6000=6025`
`<=>x_1=20,x_2=-30`