Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(12x^2y^2-6xy^2\right):3xy+2y=6xy^2\left(2x-1\right):3xy+2y=2y\left(2x-1\right)+2y=4xy-2y+2y=4xy\)
\(b,\dfrac{4}{x+1} + \dfrac{8}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{4\left(x-1\right)+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4}{x-1}\)
\(c,\dfrac{1 }{x+1}- \dfrac{1}{x-1} +\dfrac{ 2x}{x^2-1} \)
\(=\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x-1-x-1+2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2x-2}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2}{x+1}\)
\(a,=4xy-2y+2y=4xy\\ b,\dfrac{4}{x+1}+\dfrac{8}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\\ c,\dfrac{1}{x+1}-\dfrac{1}{x-1}+\dfrac{2x}{x^2-1}=\dfrac{x-1-x-1+2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+1}\)
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= (3x2 + 6xy + 3y2) - (2x + 2y) - 100
= 3(x2 + 2xy + y2) - 2(x + y) - 100
= 3(x + y)2 - 2.5 - 100
= 3. 52 -10 - 100
= 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10
= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10
= (x + y)3 - 2(x2 + 2xy + y2) + 25
= 53 - 2(x + y)2 +25
= 125 - 2. 52 + 25
= 125 - 50 + 25 = 100
a) \(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
b) \(=\dfrac{1}{x+2}+\dfrac{3}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x+2\right)\left(x-2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\)
c) \(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{x^2-2xy+y^2+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
a: =-4xyz^2
b: =-9x^2y
c: =16x^2y^2
d: =1/6x^2y^3
e: =13/6x^3y^2
f: =7/12x^4y
a) -xyz² - 3xz.yz
= -xyz² - 3xyz²
= -4xyz²
b) -8x²y - x.(xy)
= -8x²y - x²y
= -9x²y
c) 4xy².x - (-12x²y²)
= 4x²y² + 12x²y²
= 16x²y²
d) 1/2 x²y³ - 1/3 x²y.y²
= 1/2 x²y³ - 1/3 x²y³
= 1/6 x²y³
e) 3xy(x²y) - 5/6 x³y²
= 3x³y² - 5/6 x³y²
= 13/6 x³y²
f) 3/4 x⁴y - 1/6 xy.x³
= 3/4 x⁴y - 1/6 x⁴y
= 7/12 x⁴y
a: \(=6x^4-9x^3+3x^2-4x^3+6x^2-2x+10x^2-15x+5\)
\(=6x^4-13x^3+19x^2-17x+5\)
b: \(=6x^4-\dfrac{9}{4}x^3-\dfrac{9}{2}x^2-\dfrac{8}{3}x^3+x^2+2x-\dfrac{20}{3}x^2+\dfrac{5}{2}x+5\)
\(=6x^4-\dfrac{59}{12}x^3-\dfrac{67}{6}x^2+\dfrac{9}{2}x+5\)
c: \(=3x^4-\dfrac{9}{8}x^3-\dfrac{3}{4}x^2+8x^3-3x^2-6x-\dfrac{4}{3}x^2+\dfrac{1}{2}x+1\)
\(=3x^4-\dfrac{55}{8}x^3-\dfrac{25}{12}x^2-\dfrac{11}{2}x+1\)
\(=\dfrac{\left(y-2\right)\left(3xy+1\right)}{\left(3xy+1\right)^2}=\dfrac{y-2}{3xy+1}\)