\(\dfrac{3737x43-4343x37}{2+4+6+...+100}\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

   \(\dfrac{3737\times43-4343\times37}{2+4+6+...+100}\)

=  \(\dfrac{37\times101\times43-43\times101\times37}{2+4+6+...+100}\)

\(\dfrac{0}{2+4+6+...+100}\)

= 0

16 tháng 8 2023

x =nhân

25 tháng 6 2017

1) \(x+\dfrac{30}{100}x=-1,31\)

\(\Leftrightarrow x+\dfrac{3}{10}x=-\dfrac{131}{100}\)

\(\Leftrightarrow100x+30x=-131\)

\(\Leftrightarrow130x=-131\)

\(\Leftrightarrow x=-\dfrac{131}{130}\)

Vậy \(x=-\dfrac{131}{130}\)

b) \(\left(4,5-2x\right)\cdot\left(-1\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow\left(\dfrac{9}{2}-2x\right)\cdot\left(-\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow-\dfrac{18}{7}+\dfrac{8}{7}x=\dfrac{11}{4}\)

\(\Leftrightarrow-72+32x=77\)

\(\Leftrightarrow32x=77+72\)

\(\Leftrightarrow32x=149\)

\(\Leftrightarrow x=\dfrac{149}{32}\)

Vậy \(x=\dfrac{149}{32}\)

25 tháng 6 2017

sao k làm hết cho bạn ấy v anh

5 tháng 9 2022

Ta có : M . N = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\) 

\(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{100}{101}\) 

\(\dfrac{1}{101}\) 

Vậy M . N = \(\dfrac{1}{101}\)

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

21 tháng 7 2018

\(a)\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)

\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{6}{12}\right)\)

\(=\left(\dfrac{153}{54}+\dfrac{78}{54}\right):\left(1\dfrac{-5}{12}\right)\)

\(=\dfrac{231}{54}:\dfrac{7}{12}\)

\(=\dfrac{198}{27}\)

21 tháng 7 2018

\(b)\dfrac{0,8\left(\dfrac{4}{5}:1,25\right)}{0,64-\dfrac{1}{25}}\)

\(=\dfrac{0,8\left(0,8:1,25\right)}{0,64-0,04}\)

\(=\dfrac{0,8.0,64}{0,6}\)

\(=\dfrac{0,512}{0,6}\)\(=\dfrac{64}{75}\)

26 tháng 4 2017

Ta thấy: \(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{2.4}\)

\(\dfrac{1}{6^2}=\dfrac{1}{6.6}< \dfrac{1}{4.6}\)

...............

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+....+\dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}.\dfrac{49}{100}\)\(=\dfrac{49}{200}\)

=> \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2^2}+\dfrac{49}{200}=\dfrac{99}{200}\)

do: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)

Chúc bn học tốt nha

28 tháng 4 2017

thanks bạn

1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3

=>x=-16/3:7/3=-7/16

2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35

=>|x-2|=129/35

=>x-2=129/35 hoặc x-2=-129/35

=>x=199/35 hoặc x=-59/35

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

27 tháng 3 2018

\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)