Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{98\cdot99\cdot100}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{98\cdot99\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}-\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\\ =\dfrac{1}{2}\cdot\dfrac{4949}{9900}\\ =\dfrac{4949}{19800}\)
ta có \(\dfrac{2}{3}=\dfrac{6}{9}\)
=>\(\dfrac{6}{9}=\dfrac{6}{n+2}\)
=>n+2 =9
n = 9-2
n=7
Vậy n=7
Ta có:
\(\dfrac{2}{3}.\dfrac{6}{n+2}\)= \(\dfrac{12}{3\left(n+2\right)}\)= \(\dfrac{12:3}{3\left(n+2\right):3}\)= \(\dfrac{4}{n+2}\)
Để \(\dfrac{2}{3}.\dfrac{6}{n+2}\) \(\in\) Z thì
\(\dfrac{4}{n+2}\) \(\in\) Z
\(\Leftrightarrow\) 4 \(⋮\) n + 2
\(\Leftrightarrow\) n + 2 \(\in\) Ư(4)
\(\Leftrightarrow\) n + 2 \(\in\) \(\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow\) n \(\in\) \(\left\{-3;-1;-4;0;-6;2\right\}\)
Vậy n \(\in\) \(\left\{-3;-1;-4;0;-6;2\right\}\)
cuu voiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
X= \(\dfrac{30.15}{25}=18\)