Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)
A = 2
\(\dfrac{21}{24}\cdot\dfrac{2}{11}:\dfrac{9}{8}=\dfrac{21}{24}\cdot\dfrac{2}{11}\cdot\dfrac{8}{9}=\dfrac{16}{99}\)
\(\dfrac{17}{9}\cdot\dfrac{5}{6}:\dfrac{12}{13}=\dfrac{17}{9}\cdot\dfrac{5}{6}\cdot\dfrac{13}{12}=\dfrac{1105}{648}\)
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006
\(\dfrac{2}{5}+\dfrac{4}{9}=\dfrac{18}{45}+\dfrac{20}{45}=\dfrac{18+20}{45}=\dfrac{38}{45}\)
a) \(\dfrac{23}{24}< 1\)
\(\dfrac{24}{23}>1\)
\(\Rightarrow\dfrac{23}{24}< \dfrac{24}{23}\)
b) \(\dfrac{4}{21}< \dfrac{4}{20}=\dfrac{1}{5}=\dfrac{6}{30}< \dfrac{6}{29}\)
c) \(\dfrac{6}{7}=1-\dfrac{1}{7}< \dfrac{8}{9}=1-\dfrac{1}{9}\)
d) \(\dfrac{1212}{1313}=\dfrac{12\times101}{13\times101}=\dfrac{12}{13}\)
a) \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{120}{121}.\dfrac{143}{144}\)
= \(\dfrac{1.3.2.4.3.5.4.6....10.12.11.13}{2^2.3^2.4^2.5^2...11^2.12^2}\)
= \(\dfrac{1.2.12.13}{2^2.12^2}=\dfrac{13}{2.12}=\dfrac{13}{24}\)
b) \(B=\dfrac{5}{9}.\dfrac{21}{25}.\dfrac{45}{49}.\dfrac{77}{81}....\dfrac{357}{361}.\dfrac{437}{441}\)
= \(\dfrac{1.5.3.7.5.9.7.11.....17.21.19.23}{3^2.5^2.7^2....19^2.21^2}=\dfrac{1.3.21.23}{3^2.21^2}\)
= \(\dfrac{23}{3.21}=\dfrac{23}{63}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
\(\dfrac{24}{21}\cdot\dfrac{9}{8}=\dfrac{8}{7}\cdot\dfrac{9}{8}=\dfrac{9}{7}\)
= 216/168
=9/7