Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)
\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)
\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)
\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)
\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)
\(B=\dfrac{4.9.16.100}{3.8.15.99}\)
\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)
\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)
\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)
\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)
\(\Rightarrow G=\dfrac{64}{505}\)
\(B=\dfrac{2^2}{1\cdot3}+\dfrac{3^2}{2\cdot4}+\dfrac{4^2}{3\cdot5}+...+\dfrac{99^2}{98\cdot100}\\ =\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{2\cdot4+1}{2\cdot4}+\dfrac{3\cdot5+1}{3\cdot5}+...+\dfrac{98\cdot100+1}{98\cdot100}\\ =\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}+\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}+\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}+...+\dfrac{98\cdot100}{98\cdot100}+\dfrac{1}{98\cdot100}\\ =1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{2\cdot4}+1+\dfrac{1}{3\cdot5}+...+1+\dfrac{1}{98\cdot100}\\ =\left(1+1+1+...+1\right)+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ =98+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ \)Gọi \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\) là A
\(A=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{98\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{295}{198}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\dfrac{14651}{9900}=\dfrac{14651}{19800}\)
\(B=98+A=98+\dfrac{14651}{19800}=98\dfrac{14651}{19800}\)
Dễ thấy phần nguyên của B là 98
Vậy phần nguyên của B là 98
a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)
A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)
b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)
\(\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{100}{9.10}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{10.10}{9.10}\)
\(=\dfrac{2.3.4.....10}{1.2.3......9}.\dfrac{2.3.4.....10}{3.4.5.....10}\)
\(=10.2\)
\(=20\)
sai đề bn ơi
54 là 51 mới đúng
với lại lũy thừa tất cả phải là mũ 2