K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Vũ Minh Tuấn giúp mình vs

AH
Akai Haruma
Giáo viên
23 tháng 2 2020

Lời giải:

$D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+......+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}$

$4D=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}$

Trừ theo vế:

\(3D=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow 12D=4+1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2017}}-\frac{2019}{4^{2018}}\)

Trừ theo vế:
$9D=4-\frac{2019}{4^{2018}}+\frac{2019}{4^{2019}}-\frac{1}{4^{2018}}$

$=4-\frac{6061}{4^{2019}}< 4$

$\Rightarrow D< \frac{4}{9}<\frac{4}{8}$ hay $D< \frac{1}{2}$ (đpcm)

14 tháng 8 2019

\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)

\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)

Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)

\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)

\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)

\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)

\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)

\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)

24 tháng 8 2019

B= \(\frac{2\cdot2018}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}}\)

Ta có: 

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)

\(=1+\frac{1}{\frac{3.2}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2018.2019}{2}}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2018.2019}\)

\(=\frac{2}{2}+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(=2\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2\left(1-\frac{1}{2019}\right)=\frac{2.2018}{2019}\)

=> B= \(\frac{2\cdot2018}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}}=\frac{2.2018}{\frac{2.2018}{2019}}=2019\)

19 tháng 3 2019

Đề thi đó

7 tháng 10 2017

\(CM:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}+\frac{1}{2018^2}< \frac{3}{4}\)

\(=\frac{1}{2^2+3^2+4^2+...+2017^2+2018^2}\)

\(=\frac{1}{4044}\)

\(\Rightarrow\frac{1}{4044}< \frac{3}{4}\)

P/s: Ko chắc đâu nhé

7 tháng 10 2017

\(\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)

                                                              \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

                                                              \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2018}\)

                                                                 \(=\frac{3}{4}-\frac{1}{2018}< \frac{3}{4}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{3}{4}\)

18 tháng 8 2020

cảm ơn bạn nhiều

3 tháng 6 2020

ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1

=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2

=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019

=> B= 2019 *(1/2+1/3+...+1/2019)

=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)

=> A/B= 1/2019